complex polymer
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 46)

H-INDEX

28
(FIVE YEARS 5)

2021 ◽  
Vol 3 (4) ◽  
pp. 270-278
Author(s):  
Andrei Moldavanov

Stages of natural evolution such as biogenesis and abiogenesis are the well-recognized terms to characterize the very different phases of life development. Traditionally, an abiogenesis is believed as the early stage of evolution that is mainly the chemistry phase dealing with intercoupling between the complex polymer chains when manifestations of life assumes substantial participation of cooperative effects. It its turn, a biogenesis as the subsequent stage of evolution is the period for prevalence of Darwin’s laws showing, in particular, in battle among separate species in the way of variability-heredity contest. In this article, we discuss possible nature of the transition between above stages as a normal result of progress in an evolutionary system simulated by mathematical model of open system with infinite number of conserved links with system surroundings. It is shown that the biosystem, in transition point experiences the deep reconstruction in existing pattern of energy exchange which leads to emergence of the more complicated and advanced stage of evolution. Our study showed that the found transition point can be considered as a singularity point in system evolution. In its turn, the evolution stages with the dissimilar meaning are the physical placeholders for stage of abiogenesis and biogenesis in natural evolution, correspondingly.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 191
Author(s):  
Danuta Tomczyk ◽  
Wiktor Bukowski ◽  
Karol Bester ◽  
Michalina Kaczmarek

Platinum electrodes were modified with polymers of the (±)-trans-N,N′-bis(salicylidene)-1,2-cyclohexanediaminenickel(II) ([Ni(salcn)]) and (±)-trans-N,N′-bis(3,3′-tert-Bu-salicylidene)-1,2-cyclohexanediaminenickel(II) ([Ni(salcn(Bu))]) complexes to study their electrocatalytic and electroanalytical properties. Poly[Ni(salcn)] and poly[Ni(salcn(Bu))]) modified electrodes catalyze the oxidation of catechol, aspartic acid and NO2−. In the case of poly[Ni(salcn)] modified electrodes, the electrocatalysis process depends on the electroactive surface coverage. The films with low electroactive surface coverage are only a barrier in the path of the reducer to the electrode surface. The films with more electroactive surface coverage ensure both electrocatalysis inside the film and oxidation of the reducer directly on the electrode surface. In the films with the most electroactive surface coverage, electrocatalysis occurs only at the polymer–solution interface. The analysis was based on cyclic voltammetry, EQCM (electrochemical quartz crystal microbalance) and rotating disc electrode method.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4458
Author(s):  
Joanna Smenda ◽  
Karol Wolski ◽  
Kamila Chajec ◽  
Szczepan Zapotoczny

The synthesis of surface-grafted polymers with variable functionality requires the careful selection of polymerization methods that also enable spatially controlled grafting, which is crucial for the fabrication of, e.g., nano (micro) sensor or nanoelectronic devices. The development of versatile, simple, economical, and eco-friendly synthetic strategies is important for scaling up the production of such polymer brushes. We have recently shown that poly (3-methylthienyl methacrylate) (PMTM) and poly (3-trimethylsilyl-2-propynyl methacrylate) (PTPM) brushes with pendant thiophene and acetylene groups, respectively, could be used for the production of ladder-like conjugated brushes that are potentially useful in the mentioned applications. However, the previously developed syntheses of such brushes required the use of high volumes of reagents, elevated temperature, or high energy UV-B light. Therefore, we present here visible light-promoted metal-free surface-initiated ATRP (metal-free SI-ATRP) that allows the economical synthesis of PMTM and PTPM brushes utilizing only microliter volumes of reaction mixtures. The versatility of this approach was shown by the formation of homopolymers but also the block copolymer conjugated brushes (PMTM and PTPM blocks in both sequences) and patterned films using TEM grids serving as photomasks. A simple reaction setup with only a monomer, solvent, commercially available organic photocatalyst, and initiator decorated substrate makes the synthesis of these complex polymer structures achievable for non-experts and ready for scaling up.


Synlett ◽  
2021 ◽  
Author(s):  
Robert Göstl ◽  
Christoph Baumann

AbstractOptical force probes (OFPs) are force-responsive molecules that report on mechanically induced transformations by the alteration of their optical properties. Yet, their modular design and incorporation into polymer architectures at desired positions is challenging. Here we report triazole-extended anthracene OFPs that combine two modular ‘click’ reactions in their synthesis potentially allowing their incorporation at desirable positions in complex polymer materials. Importantly, these retain the excellent optical properties of their parent 9-π-extended anthracene OFP counterparts.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4267
Author(s):  
Kuo-Hui Wu ◽  
Ryota Sakamoto ◽  
Hiroaki Maeda ◽  
Eunice Jia Han Phua ◽  
Hiroshi Nishihara

We developed an efficient and convenient electrochemical method to synthesize π-conjugated redox metal-complex linear polymer wires composed of azobenzene-bridged bis(terpyridine)metal (2-M, M = Fe, Ru) units covalently immobilized on glassy carbon (GC). Polymerization proceeds by electrochemical oxidation of bis(4′-(4-anilino)-2,2′:6′,2″-terpyridine)metal (1-M) in a water–acetonitrile–HClO4 solution, affording ultralong wires up to 7400 mers (corresponding to ca. 15 μm). Both 2-Fe and 2-Ru undergo reversible redox reactions, and their redox behaviors indicate remarkably fast redox conduction. Anisotropic hetero-metal-complex polymer wires with Fe and Ru centers are constructed via stepwise electropolymerization. The cyclic voltammograms of two hetero-metal-complex polymer wires, GC/[2-Fe]–[2-Ru] (3) and GC/[2-Ru]–[2-Fe] (4), show irreversible redox reactions with opposite electron transfer characteristics, indicating redox diodelike behavior. In short, the present electrochemical method is useful to synthesize polymer wire arrays and to integrate functional molecules on carbon.


2021 ◽  
Vol 9 ◽  
Author(s):  
Vlasis G. Mavrantzas

Metropolis Monte Carlo has been employed with remarkable success over the years to simulate the dense phases of polymer systems. Owing, in particular, to the freedom it provides to accelerate sampling in phase space through the clever design and proper implementation of even unphysical moves that take the system completely away from its natural trajectory, and despite that it cannot provide any direct information about dynamics, it has turned to a powerful simulation tool today, often viewed as an excellent alternative to the other, most popular method of Molecular Dynamics. In the last years, Monte Carlo has advanced considerably thanks to the design of new moves or to the efficient implementation of existing ones to considerably more complex systems than those for which these were originally proposed. In this short review, we highlight recent progress in the field (with a clear emphasis in the last 10 years or so) by presenting examples from applications of the method to several systems in Soft Matter, such as polymer nanocomposites, soft nanostructured materials, confined polymers, polymer rings and knots, hydrogels and networks, crystalline polymers, and many others. We highlight, in particular, extensions of the method to non-equilibrium systems (e.g., polymers under steady shear flow) guided by non-equilibrium thermodynamics and emphasize the importance of hybrid modeling schemes (e.g., coupled Monte Carlo simulations with field theoretic calculations). We also include a short section discussing some key remaining challenges plus interesting future opportunities.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guilhem Reyt ◽  
Priya Ramakrishna ◽  
Isai Salas-González ◽  
Satoshi Fujita ◽  
Ashley Love ◽  
...  

AbstractLignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.


Author(s):  
Laurent Porot ◽  
Stefan Vansteenkiste ◽  
Michalina Makowska ◽  
Xavier Carbonneau ◽  
Jiqing Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document