surface seawater
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 108)

H-INDEX

40
(FIVE YEARS 8)

Author(s):  
Weijun Guo ◽  
Jibing Zou ◽  
Sihong Liu ◽  
Xuewen Chen ◽  
Xiangpeng Kong ◽  
...  

Spatial–seasonal variations in dissolved heavy metals in surface seawater were analyzed based on surveys at 87 sampling sites and water samples from six rivers across Liaodong Bay. The concentrations of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) had ranges of 0.20–40.00 (5.45 ± 5.67), 0.51–33.64 (4.68 ± 3.93), 0.03–13.47 (2.22 ± 2.01), and 0.50–80.09 μg/L (14.22 ± 16.32), respectively, throughout the four seasons of 2020. The trace metal concentration showed a spatial gradient of high to low from river to estuary and from inshore to offshore areas. A combination of pollution levels and marine sensitivity was employed to assess the pollution degree of the heavy metals. As a whole, the single pollution factors of trace metals in Liaodong Bay were ranged in the order Pb > Zn > Cu > Cd. The total pollution degree was relatively high in autumn and summer due to increased riverine inputs after the rainy season, while relatively low in spring and winter. These findings provide baseline data for future targeting policies to protect marine environments in Liaodong Bay.


2022 ◽  
Author(s):  
Guang Gao ◽  
Tifeng Wang ◽  
Jiazhen Sun ◽  
Xin Zhao ◽  
Lifang Wang ◽  
...  

Abstract. Future CO2-induced ocean acidification (OA) has been documented to either inhibit or enhance or result in no effect on marine primary productivity (PP). In order to examine effects of OA under multiple drivers, we investigated the influences of OA (a decrease of 0.4 pHtotal units with corresponding CO2 concentrations ranged 22.0–39.7 µM) on PP through deck-incubation experiments at 101 stations in the Taiwan Strait and the South China Sea (SCS), including the coastal zone, the continental shelf and slope, as well as deep-water basin. The daily net primary productivities in surface seawater under incident solar radiation ranged from 17–306 µg C (µg Chl a)−1 d−1, with the responses of PP to OA being region-dependent and the OA-induced changes varying from −88.03 % (inhibition) to 56.87 % (enhancement). The OA-treatment stimulated PP in surface waters of coastal, estuarine and shelf waters, but suppressed it in the South China Sea basin. Such OA-induced changes in PP were significantly related to NOX (the sum of NO3− and NO2−) availability, in situ pH and solar radiation in surface seawater, but negatively related to salinity changes. Our results indicate that phytoplankton cells are more vulnerable to pH drop in oligotrophic waters. Considering high nutrient and low salinity in coastal waters and reduced nutrient availability in pelagic zones with the progressive stratification associated with ocean warming, our results imply that future OA will enhance PP in coastal waters but decrease it in pelagic oligotrophic zones.


2021 ◽  
Vol 21 (24) ◽  
pp. 18543-18555
Author(s):  
Lingling Xu ◽  
Jiayan Shi ◽  
Yuping Chen ◽  
Yanru Zhang ◽  
Mengrong Yang ◽  
...  

Abstract. Isotopic compositions of Mercury (Hg) in atmospheric particles (HgPM) are probably the mixed results of emission sources and atmospheric processes. Here, we present Hg isotopic compositions in daily fine particles (PM2.5) collected from an industrial site (Chunxiao – CX) and a nearby mountain site (Daimeishan – DMS) in a coastal area of East China, and in surface seawater close to the industrial area, to reveal the influence of anthropogenic emission sources and atmospheric transformations on Hg isotopes. The PM2.5 samples displayed a significant spatial difference in δ202Hg. For the CX site, the negative δ202Hg values are similar to those of source materials, and the HgPM contents were well correlated with chemical tracers, indicating the dominant contributions of local industrial activities to HgPM2.5, whereas the observed positive δ202Hg at the DMS site was likely associated with regional emissions and extended atmospheric processes during transport. The Δ199Hg values in PM2.5 from the CX and DMS sites were comparably positive. The unity slope of Δ199Hg versus Δ201Hg over all data suggests that the odd mass independent fractionation (MIF) of HgPM2.5 was primarily induced by the photoreduction of Hg2+ in aerosols. The positive Δ200Hg values with a minor spatial difference were probably associated with the photooxidation of Hg0, which is generally enhanced in the coastal environment. Total Hg in offshore surface seawater was characterized by negative δ202Hg and near-zero Δ199Hg and Δ200Hg values, which are indistinguishable from Hg isotopes of source materials. Overall, the PM2.5 collected from industrial areas had comparable δ202Hg values but more positive Δ199Hg and Δ200Hg as compared to surface seawater. The results indicate that atmospheric transformations would induce the significant fractionation of Hg isotopes and obscure the Hg isotopic signatures of anthropogenic emissions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haohui Zhong ◽  
Hao Sun ◽  
Ronghua Liu ◽  
Yuanchao Zhan ◽  
Xinyu Huang ◽  
...  

Hadal zones are marine environments deeper than 6,000 m, most of which comprise oceanic trenches. Microbes thriving at such depth experience high hydrostatic pressure and low temperature. The genomic potentials of these microbes to such extreme environments are largely unknown. Here, we compare five complete genomes of bacterial strains belonging to Labrenzia aggregata (Alphaproteobacteria), including four from the Mariana Trench at depths up to 9,600 m and one reference from surface seawater of the East China Sea, to uncover the genomic potentials of this species. Genomic investigation suggests all the five strains of L. aggregata as participants in nitrogen and sulfur cycles, including denitrification, dissimilatory nitrate reduction to ammonium (DNRA), thiosulfate oxidation, and dimethylsulfoniopropionate (DMSP) biosynthesis and degradation. Further comparisons show that, among the five strains, 85% gene functions are similar with 96.7% of them encoded on the chromosomes, whereas the numbers of functional specific genes related to osmoregulation, antibiotic resistance, viral infection, and secondary metabolite biosynthesis are majorly contributed by the differential plasmids. A following analysis suggests the plasmidic gene numbers increase along with isolation depth and most plasmids are dissimilar among the five strains. These findings provide a better understanding of genomic potentials in the same species throughout a deep-sea water column and address the importance of externally originated plasmidic genes putatively shaped by deep-sea environment.


Resources ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 114
Author(s):  
Renato Sakai Cid ◽  
Vinicius Roveri ◽  
Diogo Guedes Vidal ◽  
Maria Alzira Pimenta Dinis ◽  
Fernando Sanzi Cortez ◽  
...  

Antiretrovirals (ARVs) have been detected in aquatic ecosystems throughout the world; however, studies focused on assessing their ecotoxicological effects on marine aquatic organisms are still rare. In the present study, the predicted environmental concentration (PEC) of 13 ARVs was estimated for surface seawater from Santos Bay, Brazil, according to the European Medicines Agency (EMEA) guidelines. The results indicated that all ARVs need to be assessed for their ecological effects, considering that they all exceeded the EMEA guideline limits (PEC > 0.01 µg L−1). In this sense, three ARVs (namely atazanavir, nevirapine and efavirenz) were selected for the acute and chronic tests with sea urchin (Echinometra lucunter). Furthermore, the Environmental Risk Assessment (ERA) for these three ARVs was also performed by calculating the risk quotient. The acute and chronic toxicity results showed inhibitory concentrations (IC) for the fertilization (IC50; 1 h; range: 11.46–84.61 mg L−1) and for the embryo–larval development (IC50; 42 h; range: 0.52–0.97 mg L−1) of the sea urchin, respectively. Moreover, the ERA showed that these three ARVs are potentially hazardous for aquatic life in Santos Bay, raising concerns about the continuous introduction of ARVs in aquatic ecosystems. The data presented may contribute to the provision of subsidies for the development of monitoring public policies that aim to reduce the introduction of ARVs into the aquatic environment.


2021 ◽  
Author(s):  
Fang Lin ◽  
Qinzhou Zhang ◽  
Jia Xie ◽  
Yubin Lin ◽  
Yumei Chen ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
JeongHee Shim ◽  
Mi-Ju Ye ◽  
Jae-Hyun Lim ◽  
Jung-No Kwon ◽  
Jeong Bae Kim

Mixed results have been reported on the evaluation of the coastal carbon cycle and its contribution to the global carbon cycle, mainly due to the shortage of observational data and the considerable spatiotemporal variability arising from complex biogeochemical factors. In this study, the partial pressure of carbon dioxide (pCO2) and related environmental factors were measured in the Jinhae–Geoje–Tongyeong bay region of the southeastern Korean Peninsula in February 2014, August 2014, April 2015, and October 2015. The mean pCO2 of surface seawater ranged from 215 to 471 μatm and exhibited a high correlation with the surface seawater temperature when data for August were excluded (R2 = 0.69), indicating that the seasonal variation in CO2 could be largely attributed to the variation in seawater temperature. However, a severe red tide event occurred in August 2014, when the lowest pCO2 value was observed despite a relatively high seawater temperature. It is considered that the active biological production of phytoplankton related to red tides counteracted the summer increase in pCO2. Based on the correlation between pCO2 and temperature, the estimated decrease in pCO2 caused by non-thermal factors was approximately 200 μatm. During the entire study period, the air–sea CO2 flux ranged from −14.2 to 3.7 mmol m–2 d–1, indicating that the study area served as an overall sink for atmospheric CO2, and only functioned as a weak source during October. The mean annual CO2 flux estimated from the correlation with temperature was −5.1 mmol m–2 d–1. However, because this estimate did not include reductions caused by sporadic events of biological production, such as red tides and phytoplankton blooms, the actual uptake flux is considered to be higher. The mean saturation state (ΩAr) value of carbonate aragonite was 2.61 for surface water and 2.04 for bottom water. However, the mean ΩAr of bottom water was <2 in August and October, and the ΩAr values measured at some of the bottom water stations in August were <1. Considering that the period from August to October corresponds to the reproduction and growth stages of shellfish, such low ΩAr values could be very damaging to shellfish production and the aquaculture industry.


2021 ◽  
Author(s):  
Shrivardhan Hulswar ◽  
Rafel Simo ◽  
Martí Galí ◽  
Thomas Bell ◽  
Arancha Lana ◽  
...  

Abstract. This paper presents an updated estimation of the bottom-up global surface seawater dimethyl sulfide (DMS) climatology. This update, called DMS-Rev3, is the third of its kind and includes five significant changes from the last climatology, ‘L11’ (Lana et al., 2011) that was released about a decade ago. The first change is the inclusion of new observations that have become available over the last decade, creating a database of 872,427 observations leading to a ~18-fold increase in raw data as compared to the last estimation The second is significant improvements in data handling, processing, and filtering, to avoid biases due to different observation frequencies which results from different measurement techniques. Thirdly, we incorporate the dynamic seasonal changes observed in the geographic boundaries of the ocean biogeochemical provinces. The fourth change involves the refinement of the interpolation algorithm used to fill in the missing data. And finally, an upgraded smoothing algorithm based on observed DMS variability length scales (VLS) helps to reproduce a more realistic distribution of the DMS concentration data. The results show that DMS-Rev3 estimates the global annual mean DMS concentration to be ~1.87 nM (2.35 nM without a sea-ice mask), i.e., about 4 % lower than the previous bottom-up ‘L11’ climatology. However, significant regional differences of more than 100 % as compared to L11 are observed. The global sea to air flux of DMS is estimated at ~27 TgS yr−1 which is about 4 % lower than L11, although, like the DMS distribution, large regional differences were observed. The largest changes are observed in high concentration regions such as the polar oceans, although oceanic regions that were under-sampled in the past also show large differences between revisions of the climatology. Finally, DMS-Rev3 reduces the previously observed patchiness in high productivity regions.  


Sign in / Sign up

Export Citation Format

Share Document