subpolar gyre
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 55)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Tongya Liu ◽  
Hsien-Wang Ou ◽  
Xiaohui Liu ◽  
Yu-Kun Qian ◽  
Dake Chen

AbstractA series of numerical simulations with different forcing conditions are carried out, to investigate the roles played by buoyancy and wind forcing on the upper ocean gyres, and to contrast the laminar and eddying regimes. Model experiments show that the buoyancy-driven eastward geostrophic flow tends to suppress the formation of the wind-driven subpolar gyre, but the northward eddy heat transport can homogenize the subpolar water and reduce the meridional temperature gradient by about two-third, thus counteracting the buoyancy effect and saving the subpolar gyre. For the subtropical gyre, its transport is enhanced by eddy mixing, and the role of buoyancy forcing is very sensitive to the choice of diapycnal diffusivity. Our results suggest that eddy effects must be considered in the dynamics of the subpolar gyre, and vertical diffusivity should be selected carefully in simulating the basin-wide circulations.


Author(s):  
Andrew L. Stewart ◽  
Shantong Sun

Abstract The subpolar gyres of the Southern Ocean form an important dynamical link between the Antarctic Circumpolar Current (ACC) and the coastline of Antarctica. Despite their key involvement in the production and export of bottom water and the poleward transport of oceanic heat, these gyres are rarely acknowledged in conceptual models of the Southern Ocean circulation, which tend to focus on the zonally-averaged overturning across the ACC. To isolate the effect of these gyres on the regional circulation, we carried out a set of numerical simulations with idealized representations of the Weddell Sea sector in the Southern Ocean. A key result is that the zonally-oriented submarine ridge along the northern periphery of the subpolar gyre plays a fundamental role in setting the stratification and circulation across the entire region. In addition to sharpening and strengthening the horizontal circulation of the gyre, the zonal ridge establishes a strong meridional density front that separates the weakly stratified subpolar gyre from the more stratified circumpolar flow. Critically, the formation of this front shifts the latitudinal outcrop position of certain deep isopycnals such that they experience different buoyancy forcing at the surface. Additionally, the zonal ridge modifies the mechanisms by which heat is transported poleward by the ocean, favoring heat transport by transient eddies while suppressing that by stationary eddies. This study highlights the need to characterize how bathymetry at the subpolar gyre-ACC boundary may constrain the transient response of the regional circulation to changes in surface forcing.


2021 ◽  
Vol 198 ◽  
pp. 102685
Author(s):  
Jeffrey S. Grabon ◽  
John M. Toole ◽  
An T. Nguyen ◽  
Richard A. Krishfield

2021 ◽  
Vol 8 ◽  
Author(s):  
Nina Bednaršek ◽  
Kerry-Ann Naish ◽  
Richard A. Feely ◽  
Claudine Hauri ◽  
Katsunori Kimoto ◽  
...  

Exposure to the impact of ocean acidification (OA) is increasing in high-latitudinal productive habitats. Pelagic calcifying snails (pteropods), a significant component of the diet of economically important fish, are found in high abundance in these regions. Pteropods have thin shells that readily dissolve at low aragonite saturation state (Ωar), making them susceptible to OA. Here, we conducted a first integrated risk assessment for pteropods in the Eastern Pacific subpolar gyre, the Gulf of Alaska (GoA), Bering Sea, and Amundsen Gulf. We determined the risk for pteropod populations by integrating measures of OA exposure, biological sensitivity, and resilience. Exposure was based on physical-chemical hydrographic observations and regional biogeochemical model outputs, delineating seasonal and decadal changes in carbonate chemistry conditions. Biological sensitivity was based on pteropod morphometrics and shell-building processes, including shell dissolution, density and thickness. Resilience and adaptive capacity were based on species diversity and spatial connectivity, derived from the particle tracking modeling. Extensive shell dissolution was found in the central and western part of the subpolar gyre, parts of the Bering Sea, and Amundsen Gulf. We identified two distinct morphotypes: L. helicina helicina and L. helicina pacifica, with high-spired and flatter shells, respectively. Despite the presence of different morphotypes, genetic analyses based on mitochondrial haplotypes identified a single species, without differentiation between the morphological forms, coinciding with evidence of widespread spatial connectivity. We found that shell morphometric characteristics depends on omega saturation state (Ωar); under Ωar decline, pteropods build flatter and thicker shells, which is indicative of a certain level of phenotypic plasticity. An integrated risk evaluation based on multiple approaches assumes a high risk for pteropod population persistence with intensification of OA in the high latitude eastern North Pacific because of their known vulnerability, along with limited evidence of species diversity despite their connectivity and our current lack of sufficient knowledge of their adaptive capacity. Such a comprehensive understanding would permit improved prediction of ecosystem change relevant to effective fisheries resource management, as well as a more robust foundation for monitoring ecosystem health and investigating OA impacts in high-latitudinal habitats.


2021 ◽  
Author(s):  
J. van den Berk ◽  
S. S. Drijfhout ◽  
W. Hazeleger

AbstractFollowing a high-end projection for mass loss from the Greenland and Antarctic ice-sheets, a freshwater forcing was applied to the ocean surface in the coupled climate model EC-Earthv2.2 to study the response to meltwater release assuming an RCP8.5 emission scenario. The meltwater forcing results in an overall freshening of the Atlantic that is dominated by advective changes, strongly enhancing the freshening due to dilution by Greenland meltwater release. The strongest circulation change occurs in the western North Atlantic subpolar gyre and in the gyre in the Nordic Seas, leaving the North Atlantic subpolar gyre the region where most advective salt export occurs. Associated with counteracting changes in both gyre systems, the response of the Atlantic Meridional Overturning Circulation is rather weak over the 190 years of the experiment; it reduces with only 1 Sv ($$= 10^6$$ = 10 6 m $$^3$$ 3 s $$^{-1}$$ - 1 ), compared to changes in the subpolar gyre of 5 Sv. This relative insensitivity of the AMOC to the forcing is attributed to enhanced convection in the Nordic Seas and stronger overflows that compensate reduced convection in the Labrador and Irminger Seas, and lead to higher sea surface temperatures (SSTs) in the former and lower SSTs in the latter region. The weakened subpolar gyre in the west also shifts the North Atlantic Current and the subpolar-subtropical gyre boundary; with the subtropical gyre expanding, and the western subpolar gyre contracting. The SST changes are associated with obduction of Atlantic waters in the Nordic Seas that would otherwise obduct in the western subpolar gyre. The anomalous SSTs also induce a coupled ocean-atmosphere feedback that further strengthens the Nordic Seas circulation and weakens the western subpolar gyre. This occurs because the anomalous SST-gradient enhances the westerlies, especially between 65$$^{\circ }$$ ∘ N and 70$$^{\circ }$$ ∘ N; the associated increase in windstress curl consequently enhances the gyre in the Nordic Seas. This feedback is driven by the Greenland mass loss; Antarctic meltwater discharge causes a weaker, opposite response and more particularly affects the South Atlantic salinity budget through northward advection of low-salinity waters from the Southern Ocean. This effect, however, becomes visible only hundred years after the onset of Antarctic mass loss. We conclude that the response to freshwater forcing from both ice caps can lead to a complex response in the Atlantic circulation systems with opposing effects in different subbasins. The relative strength of the response is time-dependent and largely governed by internal feedbacks; the forcing acts mainly as a trigger and is decoupled from the response.


2021 ◽  
pp. 1-56
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

AbstractThere is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic and meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic sector variability. This mode accounting for 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre leads to lower surface salinity and density in the sinking region, which reduces deep convection and eventually AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.


2021 ◽  
Author(s):  
Marion Devilliers ◽  
Didier Swingedouw ◽  
Juliette Mignot ◽  
Julie Deshayes ◽  
Gilles Garric ◽  
...  

Abstract Greenland ice sheet experienced an intensive melting in the last century, especially in the 1920s and over the last decades. The supplementary input into the ocean could disrupt the freshwater budget of the North Atlantic. Simultaneously, some signs of a recent weakening of the Atlantic Meridional Overturning Circulation (AMOC) have been reported. In order to better understand the possible impact of the increasing melting on the North Atlantic circulation, salinity and temperature trends, we construct an observation-based estimate of the freshwater fluxes spanning from 1840 to 2014. The estimate is based on runoff fluxes coming from Greenland ice sheet and surrounding glaciers and ice caps. Input from iceberg melting is also included and spatially distributed over the North Atlantic following an observed climatology. We force a set of historical simulations of the IPSL-CM6A-LR coupled climate model with this reconstruction from 1920 to 2014. The ten-member ensemble mean displays freshened and cooled waters around Greenland, which spread in the subpolar gyre, and then towards the subtropical gyre and the Nordic Seas. Over the whole period, the convection is reduced in the Labrador and Nordic Seas, while it is slightly enhanced in the Irminger Sea, and the AMOC is weakened by 0.32±0.35 Sv at 26°N. The multi-decadal trend of the North Atlantic surface temperature obtained with the additional freshwater forcing is slightly closer to observations than in standard historical simulations, although the two trends are only different at the 90% confidence level. Slight improvement of the Root Mean Square Error with respect to observations in the subpolar gyre region suggests that part of the surface temperature variability over the recent decades may have been forced by the release of freshwater from Greenland and surrounding regions since the 1920s. Finally, we highlight that the AMOC decrease due to Greenland melting remains modest in these simulations and can only explain a very small amount of the 3±1 Sv weakening suggested in a recent study.


2021 ◽  
Vol 11 (8) ◽  
pp. 3343
Author(s):  
Harunur Rashid ◽  
Qian Qian Lu ◽  
Min Zeng ◽  
Yang Wang ◽  
Zhao Wu Zhang

Dramatic changes occur in the sea-surface characteristics (i.e., temperature and salinity) and freshwater input due to the interaction of cold and fresh Labrador Current and warm and salty North Atlantic Current (NAC) on the southeast Grand Banks. As a result, the biological productivity and seasonal stratification of the upper water masses are intensified. Such changes must have been more dramatic during the glacial times due to the penetration of the Polar and Arctic fronts and southward migration of the Gulf Stream/NAC. However, the extent to which such changes impacted the sea-surface characteristics in the Newfoundland Basin is poorly known. We report changes in the sea-surface characteristics using a piston core (Hu9007-08) collected from the Milne seamount during the last 145,000 years. Heinrich layers H1, H2, H4, and H5 and H11 within the MIS3 and at the penultimate deglaciation were identified by the ice-rafted detritus (IRD) and Neogloboquadrina pachyderma peaks and lighter oxygen isotopes. Rapid turnover by the foraminiferal species with distinct depth habitats and ecological niches in the mixed-layer and thermocline suggests an interplay between the polar and subpolar water masses during the Heinrich and non-Heinrich periods. Only two North Atlantic-wide cooling events, C24 and C21, in which the latter event linked to the minor IRD event during the marine isotope stage (MIS) 5 in Hu90-08, compared to the eight events in the eastern subpolar gyre (e.g., ODP site 984). Millennial-scale N. pachyderma variability in the western subpolar gyre appears to be absent in the eastern subpolar gyre during the MIS3 suggesting the occasional presence of salty and warm water by the NAC inflow, implying a different climate state between the western and eastern subpolar gyre. Although T. quinqueloba data are fragmentary, there are differences between the western and eastern subpolar gyre in addition to the differences within the western subpolar gyre during MIS5 that might imply a variable influence by the subpolar water. This finding suggests that the influence by the NAC outweighs the impact of cold and fresh polar water in the northern northwest Atlantic during the MIS5.


Sign in / Sign up

Export Citation Format

Share Document