stagonospora nodorum
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 29)

H-INDEX

32
(FIVE YEARS 1)

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1586
Author(s):  
Svetlana Veselova ◽  
Tatyana Nuzhnaya ◽  
Guzel Burkhanova ◽  
Sergey Rumyantsev ◽  
Igor Maksimov

Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1–SnToxA, Snn1–SnTox1and Snn3–SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3–SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1–SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1–SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host’s own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rami AlTameemi ◽  
Harsimardeep S. Gill ◽  
Shaukat Ali ◽  
Girma Ayana ◽  
Jyotirmoy Halder ◽  
...  

AbstractStagonospora nodorum blotch (SNB) is an economically important wheat disease caused by the necrotrophic fungus Parastagonospora nodorum. SNB resistance in wheat is controlled by several quantitative trait loci (QTLs). Thus, identifying novel resistance/susceptibility QTLs is crucial for continuous improvement of the SNB resistance. Here, the hard winter wheat association mapping panel (HWWAMP) comprising accessions from breeding programs in the Great Plains region of the US, was evaluated for SNB resistance and necrotrophic effectors (NEs) sensitivity at the seedling stage. A genome-wide association study (GWAS) was performed to identify single‐nucleotide polymorphism (SNP) markers associated with SNB resistance and effectors sensitivity. We found seven significant associations for SNB resistance/susceptibility distributed over chromosomes 1B, 2AL, 2DS, 4AL, 5BL, 6BS, and 7AL. Two new QTLs for SNB resistance/susceptibility at the seedling stage were identified on chromosomes 6BS and 7AL, whereas five QTLs previously reported in diverse germplasms were validated. Allele stacking analysis at seven QTLs explained the additive and complex nature of SNB resistance. We identified accessions (‘Pioneer-2180’ and ‘Shocker’) with favorable alleles at five of the seven identified loci, exhibiting a high level of resistance against SNB. Further, GWAS for sensitivity to NEs uncovered significant associations for SnToxA and SnTox3, co-locating with previously identified host sensitivity genes (Tsn1 and Snn3). Candidate region analysis for SNB resistance revealed 35 genes of putative interest with plant defense response-related functions. The QTLs identified and validated in this study could be easily employed in breeding programs using the associated markers to enhance the SNB resistance in hard winter wheat.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 174
Author(s):  
Svetlana V. Veselova ◽  
Tatyana V. Nuzhnaya ◽  
Guzel F. Burkhanova ◽  
Sergey D. Rumyantsev ◽  
Elza K. Khusnutdinova ◽  
...  

Ethylene, salicylic acid (SA), and jasmonic acid are the key phytohormones involved in plant immunity, and other plant hormones have been demonstrated to interact with them. The classic phytohormone cytokinins are important participants of plant defense signaling. Crosstalk between ethylene and cytokinins has not been sufficiently studied as an aspect of plant immunity and is addressed in the present research. We compared expression of the genes responsible for hormonal metabolism and signaling in wheat cultivars differing in resistance to Stagonospora nodorum in response to their infection with fungal isolates, whose virulence depends on the presence of the necrotrophic effector SnTox3. Furthermore, we studied the action of the exogenous cytokinins, ethephon (2-chloroethylphosphonic acid, ethylene-releasing agent) and 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) on infected plants. Wheat susceptibility was shown to develop due to suppression of reactive oxygen species production and decreased content of active cytokinins brought about by SnTox3-mediated activation of the ethylene signaling pathway. SnTox3 decreased cytokinin content most quickly by its activated glucosylation in an ethylene-dependent manner and, furthermore, by oxidative degradation and inhibition of biosynthesis in ethylene-dependent and ethylene-independent manners. Exogenous zeatin application enhanced wheat resistance against S. nodorum through inhibition of the ethylene signaling pathway and upregulation of SA-dependent genes. Thus, ethylene inhibited triggering of SA-dependent resistance mechanism, at least in part, by suppression of the cytokinin signaling pathway.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Belachew Asalf ◽  
Andrea Ficke ◽  
Ingeborg Klingen

Wheat plants are under constant attack by multiple pests and diseases. Until now, there are no studies on the interaction between the aphid Rhopalosiphum padi and the plant pathogenic fungus Parastagonospora nodorum causal agent of septoria nodorum blotch (SNB) on wheat. Controlled experiments were conducted to determine: (i) The preference and reproduction of aphids on P. nodorum inoculated and non-inoculated wheat plants and (ii) the effect of prior aphid infestation of wheat plants on SNB development. The preference and reproduction of aphids was determined by releasing female aphids on P. nodorum inoculated (SNB+) and non-inoculated (SNB−) wheat leaves. The effect of prior aphid infestation of wheat plants on SNB development was determined by inoculating P. nodorum on aphid-infested (Aphid+) and aphid free (Aphid−) wheat plants. Higher numbers of aphids moved to and settled on the healthy (SNB−) leaves than inoculated (SNB+) leaves, and reproduction was significantly higher on SNB− leaves than on SNB+ leaves. Aphid infestation of wheat plants predisposed the plants to P. nodorum infection and colonization. These results are important to understand the interactions between multiple pests in wheat and hence how to develop new strategies in future integrated pest management (IPM).


Author(s):  
Mikhail Yurievich Shein ◽  
Guzel Fanilevna Burkhanova ◽  
Anastasia Yurievna Merzlyakova ◽  
Igor Vladimirovich Maksimov

Author(s):  
E. R. Sarvarova ◽  
E. A. Cherepanova ◽  
I. V. Maksimov

The direct antibiotic effect of lipopeptides from four endophytic strains on the germination of spores of the pathogenic fungus Stagonospora nodorum (Berk.) was found and the minimum inhibitory concentration (MIC) of these lipopeptides was determined.


Author(s):  
S. V. Veselova ◽  
T. V. Nuzhnaya ◽  
G. F. Burkhanova ◽  
S. D. Rumyantsev

The effect of three concentrations of trans-zeatin on the indices of wheat plant resistance to S. nodorum was studied. Two concentrations of trans-zeatin showed a maximum increase in the resistance of wheat plants to S. nodorum.


Author(s):  
S. D. Rumyantsev ◽  
S. V. Veselova ◽  
T. V. Nuzhnaya ◽  
G. F. Burkhanova

The effect of the Stagonospora nodorum effector SnTox3 on the biosynthesis and metabolism of cytokinins of host plant was studied. The SnTox3 effector influenced the biosynthesis of cytokinins along an ethylene-dependent and ethylene-independent pathway.


Sign in / Sign up

Export Citation Format

Share Document