translational velocity
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 28)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 933 ◽  
Author(s):  
Satoshi Taguchi ◽  
Tetsuro Tsuji

The flow around a spinning sphere moving in a rarefied gas is considered in the following situation: (i) the translational velocity of the sphere is small (i.e. the Mach number is small); (ii) the Knudsen number, the ratio of the molecular mean free path to the sphere radius, is of the order of unity (the case with small Knudsen numbers is also discussed); and (iii) the ratio between the equatorial surface velocity and the translational velocity of the sphere is of the order of unity. The behaviour of the gas, particularly the transverse force acting on the sphere, is investigated through an asymptotic analysis of the Boltzmann equation for small Mach numbers. It is shown that the transverse force is expressed as $\boldsymbol{F}_L = {\rm \pi}\rho a^3 (\boldsymbol{\varOmega} \times \boldsymbol{v}) \bar{h}_L$ , where $\rho$ is the density of the surrounding gas, a is the radius of the sphere, $\boldsymbol {\varOmega }$ is its angular velocity, $\boldsymbol {v}$ is its velocity and $\bar {h}_L$ is a numerical factor that depends on the Knudsen number. Then, $\bar {h}_L$ is obtained numerically based on the Bhatnagar–Gross–Krook model of the Boltzmann equation for a wide range of Knudsen number. It is shown that $\bar {h}_L$ varies with the Knudsen number monotonically from 1 (the continuum limit) to $-\tfrac {2}{3}$ (the free molecular limit), vanishing at an intermediate Knudsen number. The present analysis is intended to clarify the transition of the transverse force, which is previously known to have different signs in the continuum and the free molecular limits.


2021 ◽  
Vol 11 (11) ◽  
pp. 5215
Author(s):  
Mohamed Elfaki ◽  
Mohammad Shakir Nasif ◽  
Masdi Muhammad

Slug multiphase flow is known to be the most prevalent regime because of its extensive encounters associated with chaotic behaviour, complexity and instability that cause significant fluctuations in operating conditions and thus lead to undesirable effects. In this study, the effect of varying crude oil grades on slug characteristics is numerically investigated. A partitioned one-way coupling framework of fluid–structure interaction (FSI) one-way coupling framework is adopted to investigate the influence of changing oil grades and slug characteristics on the maximum induced stresses in horizontal carbon steel pipe. It was found that increasing crude oil density causes frequent slugging and promotes the formation of liquid slugs further upstream near the inlet with high translational velocity and short wavelength. Therefore, the maximum induced stresses resulting from the interaction between slugs and the inner surface of pipes are strongly dependent on crude oil grade. In modelling extra heavy crude oil, a 40% increase in maximum induced stresses is recorded when the liquid superficial velocity decreases from 1 to 0.86 m/s at a constant natural gas superficial velocity.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Li ◽  
Jian Li ◽  
Chun-peng Yu ◽  
Shuai Chang ◽  
Ling-ling Xie ◽  
...  

Abstract Background Synonymous mutations do not change the protein sequences. Automatically, they have been regarded as neutral events and are ignored in the mutation-based cancer studies. However, synonymous mutations will change the codon optimality, resulting in altered translational velocity. Methods We fully utilized the transcriptome and translatome of liver cancer and normal tissue from ten patients. We profiled the mutation spectrum and examined the effect of synonymous mutations on translational velocity. Results Synonymous mutations that increase the codon optimality significantly enhanced the translational velocity, and were enriched in oncogenes. Meanwhile, synonymous mutations decreasing codon optimality slowed down translation, and were enriched in tumor suppressor genes. These synonymous mutations significantly contributed to the translational changes in tumor samples compared to normal samples. Conclusions Synonymous mutations might play a role in liver cancer development by altering codon optimality and translational velocity. Synonymous mutations should no longer be ignored in the genome-wide studies.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 822
Author(s):  
Yury Stepanyants ◽  
Izolda Sturova

This paper presents the calculation of the hydrodynamic forces exerted on an oscillating circular cylinder when it moves perpendicular to its axis in infinitely deep water covered by compressed ice. The cylinder can oscillate both horizontally and vertically in the course of its translational motion. In the linear approximation, a solution is found for the steady wave motion generated by the cylinder within the hydrodynamic set of equations for the incompressible ideal fluid. It is shown that, depending on the rate of ice compression, both normal and anomalous dispersion can occur in the system. In the latter case, the group velocity can be opposite to the phase velocity in a certain range of wavenumbers. The dependences of the hydrodynamic loads exerted on the cylinder (the added mass, damping coefficients, wave resistance and lift force) on the translational velocity and frequency of oscillation were studied. It was shown that there is a possibility of the appearance of negative values for the damping coefficients at the relatively big cylinder velocity; then, the wave resistance decreases with the increase in cylinder velocity. The theoretical results were underpinned by the numerical calculations for the real parameters of ice and cylinder motion.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas Eiter ◽  
Mads Kyed

AbstractThe equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.


2021 ◽  
Vol 14 (1) ◽  
pp. 173-184
Author(s):  
Loiy Al-Ghussain ◽  
Sean C. C. Bailey

Abstract. A multi-hole probe mounted on an aircraft provides the air velocity vector relative to the aircraft, requiring knowledge of the aircraft spatial orientation (e.g., Euler angles), translational velocity and angular velocity to translate this information to an Earth-based reference frame and determine the wind vector. As the relative velocity of the aircraft is typically an order of magnitude higher than the wind velocity, the extracted wind velocity is very sensitive to multiple sources of error including misalignment of the probe and aircraft coordinate system axes, sensor error and misalignment in time of the probe and aircraft orientation measurements in addition to aerodynamic distortion of the velocity field by the aircraft. Here, we present an approach which can be applied after a flight to identify and correct biases which may be introduced into the final wind measurement. The approach was validated using a ground reference, different aircraft and the same aircraft at different times. The results indicate a significant reduction in wind velocity variance at frequencies which correspond to aircraft motion.


Author(s):  
Jenny Lu ◽  
Elena A. Westeinde ◽  
Lydia Hamburg ◽  
Paul M. Dawson ◽  
Cheng Lyu ◽  
...  

When an animal moves through the world, its brain receives a stream of information about the body's translational movement. These incoming movement signals, relayed from sensory organs or as copies of motor commands, are referenced relative to the body. Ultimately, such body-centric movement signals must be transformed into world-centric coordinates for navigation [1]. Here we show that this computation occurs in the fan-shaped body in the Drosophila brain. We identify two cell types in the fan-shaped body, PFNd and PFNv [2,3], that conjunctively encode translational velocity signals and heading signals in walking flies. Specifically, PFNd and PFNv neurons form a Cartesian representation of body-centric translational velocity — acquired from premotor brain regions [4,5] — that is layered onto a world-centric heading representation inherited from upstream compass neurons [6-8]. Then, we demonstrate that the next network layer, comprising hΔB neurons, is wired so as to transform the representation of translational velocity from body-centric to world-centric coordinates. We show that this transformation is predicted by a computational model derived directly from electron microscopy connectomic data [9]. The model illustrates the key role of a specific network motif, whereby the PFN neurons that synapse onto the same hΔB neuron have heading-tuning differences that offset the differences in their preferred body-centric directions of movement. By integrating a world-centric representation of travel velocity over time, it should be possible for the brain to form a working memory of the path traveled through the environment [10-12].


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402094305
Author(s):  
Lian Wang ◽  
Xihua Chu ◽  
Ji Wan ◽  
Chenxi Xiu

Micropolar fluids commonly represent the complex fluids with microstructure, for example, animal blood and liquid crystals. To understand the behavior of micropolar fluids and the role of micropolar parameters, different micropolar fluids models were implemented by user-defined function in the FLUENT software. The correctness of user-defined function programs was verified comparing to the analytical solution in the Poiseuille flow. Then, the hydrodynamic behavior was analyzed in the Poiseuille flow with a moving particle, slider bearing, and dam break. Numerical results show that microrotation viscosity weakens translational velocity while enhances the pressure of micropolar fluids, in addition, microrotation velocity decreases with the increase in angular viscosity.


Sign in / Sign up

Export Citation Format

Share Document