mode transition
Recently Published Documents


TOTAL DOCUMENTS

1006
(FIVE YEARS 225)

H-INDEX

52
(FIVE YEARS 7)

Author(s):  
Zhenyu Liu ◽  
Peilei Zhang ◽  
Mingliang Yan ◽  
Zhishui Yu ◽  
Yingtao Tian ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261093
Author(s):  
Wentao Huang ◽  
Jinman Yu ◽  
Zhijun Yuan ◽  
Zhongwei He ◽  
Jun He ◽  
...  

With the construction and development of ultra-high voltage (UHV) power grids, large-scale, long-distance power transmission has become common. A failure of the connecting line between the sending-end power grid and the receiving-end power grid will cause a large-scale power shortage and a frequency drop in the receiving-end power grid, which can result in the frequency collapse. Presently, under-frequency load shedding (UFLS) is adopted for solving the frequency control problem in emergency under-frequency conditions, which can easily cause large load losses. In this context, a frequency coordination optimal control strategy is proposed, which combines the mode transition of pumped storage units with UFLS to deal with emergency under-frequency problems. First, a mathematical model of the frequency dynamic response is established, which combines the mode transition of pumped storage units with UFLS based on a single-machine equivalent model. Then, an optimal model of the minimal area of the power system’s operation frequency trajectory is introduced, yielding the optimal frequency trajectory, and is used for obtaining the action frequency of the joint control strategy. A simulated annealing algorithm based on the perturbation analysis is proposed for solving the optimal model, and the optimal action frequency is obtained that satisfies the transient frequency offset safety constraint of the power system. Thus, the joint optimal control of the mode transition of the pumped storage units and UFLS is realized. Finally, the EPRI-36 bus system and China’s actual power grid are considered, for demonstrating the efficiency of the proposed strategy.


2021 ◽  
Author(s):  
Giwook Shin ◽  
Hyunsun Hahn ◽  
Minwoo Kim ◽  
Sang-Hee Hahn ◽  
WonHa Ko ◽  
...  

Abstract Suppression or mitigation of edge-localized mode (ELM) crashes is necessary for ITER. The strategy to suppress all the ELM crashes by the resonant magnetic perturbation (RMP) should be applied as soon as the first low-to-high confinement (L-H) transition occurs. A control algorithm based on real-time machine learning (ML) enables such an approach: it classifies the H-mode transition and the ELMy phase in real-time and automatically applies the preemptive RMP. This paper reports the algorithm design, which is now implemented in the KSTAR plasma-control system, and the corresponding experimental demonstration of typical high-δ KSTAR H-mode plasmas. As a result, all initial ELM crashes are suppressed with an acceptable safety factor at the edge (q95) and with RMP field adjustment. Moreover, the ML-driven ELM-crash-suppression discharges remain stable without further degradation due to the regularization of the plasma pedestal.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7986
Author(s):  
Xiaodong Xu ◽  
Xiaowei Liu ◽  
Yufeng Zhang

High-precision disk resonator gyroscope has a high quality factor in order to improve the performance of the gyroscope, as the high quality factor can lead to a long starting time. In this paper, a control system of the driving loop of the disk MEMS resonant gyroscope with the quick start is designed. The control system has functions of quick frequency locking and fast step response. Coarse-precision mode transition system is designed for quick frequency locking. A large-small mode transition system is designed for fast step response. The correctness of the design is verified by circuit test. The test results show that the start-up time is reduced by over 80% compared with the traditional control loop.


2021 ◽  
Author(s):  
Neethu Mariam Mathew ◽  
Lars Grüner-Nielsen ◽  
Zepeng Wang ◽  
Lars Rishoj ◽  
Karsten Rottwitt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document