barkhausen noise
Recently Published Documents


TOTAL DOCUMENTS

997
(FIVE YEARS 157)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 25 ◽  
Author(s):  
Marcel Freitas de Souza ◽  
Juan Manuel Pardal ◽  
Hugo Ribeiro da Igreja ◽  
Linilson Rodrigues Padovese ◽  
Maria Cindra Fonseca

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 118
Author(s):  
Michal Maciusowicz ◽  
Grzegorz Psuj ◽  
Paweł Kochmański

This paper presents a new approach to the extraction and analysis of information contained in magnetic Barkhausen noise (MBN) for evaluation of grain oriented (GO) electrical steels. The proposed methodology for MBN analysis is based on the combination of the Short-Time Fourier Transform for the observation of the instantaneous dynamics of the phenomenon and deep convolutional neural networks (DCNN) for the extraction of hidden information and building the knowledge. The use of DCNN makes it possible to find even complex and convoluted rules of the Barkhausen phenomenon course, difficult to determine based solely on the selected features of MBN signals. During the tests, several samples made of conventional and high permeability GO steels were tested at different angles between the rolling and transverse directions. The influences of the angular resolution and the proposed additional prediction update algorithm on the DCNN accuracy were investigated, obtaining the highest gain for the angle of 3.6°, for which the overall accuracy exceeded 80%. The obtained results indicate that the proposed new solution combining time–frequency analysis and DCNN for the quantification of information from MBN having stochastic nature may be a very effective tool in the characterization of the magnetic materials.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8310
Author(s):  
Jia Liu ◽  
GuiYun Tian ◽  
Bin Gao ◽  
Kun Zeng ◽  
QianHang Liu ◽  
...  

Stress affects the microstructure of the material to influence the durability and service life of the components. However, the previous work of stress measurement lacks quantification of the different variations in time and spatial features of micromagnetic properties affected by stress in elastic and plastic ranges, as well as the evolution of microstructure. In this paper, microstructure evolution under stress in elastic and plastic ranges is evaluated by magnetic Barkhausen noise (MBN) transient analysis. Based on a J-A model, the duration and the intensity are the eigenvalues for MBN transient analysis to quantify transient size and number of Barkhausen events under stress. With the observation of domain wall (DW) distribution and microstructure, the correlation between material microstructure and MBN transient eigenvalues is investigated to verify the ability of material status evaluation on the microscopic scale of the method. The results show that the duration and the intensity have different change trends in elastic and plastic ranges. The eigenvalue fusion of the duration and intensity distinguishes the change in microstructure under the stress in elastic and plastic deformation. The appearance of grain boundary (GB) migration and dislocation under the stress in the plastic range makes the duration and the intensity higher on the GB than those inside the grain. Besides, the reproducibility of the proposed method is investigated by evaluating microstructure evolution for silicon steel sheet and Q235 steel sheet. The proposed method investigates the correlation between the microstructure and transient micromagnetic properties, which has the potential for stress evaluation in elastic and plastic ranges for industrial materials.


2021 ◽  
Vol 40 (4) ◽  
Author(s):  
Hongming Tu ◽  
Jianbo Wu ◽  
Maciej Roskosz ◽  
Chengyong Liu ◽  
Shicheng Qiu

2021 ◽  
Vol 11 (22) ◽  
pp. 10646
Author(s):  
Filip Pastorek ◽  
Martin Decký ◽  
Miroslav Neslušan ◽  
Martin Pitoňák

This study deals with corrosion damage of low alloyed feritic steels of variable strength. Three different steels of nominal yield strength 235, 700 and 1100 MPa were subjected to the variable degree of corrosion attack developed in the corrosion chamber under a neutral salt spray (NSS) atmosphere. The corrosion damage was investigated by the use of conventional metallographic observations when the thickness of corroded layer was quantified. Moreover, non-destructive magnetic technique, based on Barkhausen noise, was also employed. It was found that the rate of corrosion damage decreases along with the increasing number of days in the chamber. The similar evolution can be also found for Barkhausen noise emission and the extracted parameters from the emission. It can be reported that conventional rms value of Barkhausen noise signal as well as FWHM (full width at half maximum of Barkhausen noise envelope) can be linked with the corrosion extent, especially in the early phases of corrosion attack. The PP (peak position of Barkhausen noise envelope) values exhibit poor sensitivity.


Author(s):  
Aphrodite Ktena ◽  
Mehrija Hasicic ◽  
Fernando J G Landgraf ◽  
Eleni Moudilou ◽  
Spyridon Angelopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document