imprinted genes
Recently Published Documents


TOTAL DOCUMENTS

792
(FIVE YEARS 166)

H-INDEX

76
(FIVE YEARS 7)

Open Medicine ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. 174-184
Author(s):  
Rong Liang ◽  
Fang Fang ◽  
Sen Li ◽  
Xi Chen ◽  
Xiaohong Zhang ◽  
...  

Abstract Assisted oocyte activation (AOA) has been proposed as an effective technique to overcome the problem of impaired fertilization after intracytoplasmic sperm injection (ICSI) but the safety of AOA remains a concern. We aimed to investigate if AOA induces imprinting effects on embryos. We used 13 cleavage embryos, nine blastocysts, and eight placentas from 15 patients. The subjects were divided into six groups by tissue type and with or without AOA. The methylation levels of imprinted genes (H19, paternally expressed gene [PEG3] and small nuclear ribonucleoprotein polypeptide N [SNRPN]) were tested by pyrosequencing. We observed different methylation levels among cleavage embryos. The variability was much more remarkable between cleavage embryos than blastocysts and placenta tissues. The methylation levels were especially higher in SNRPN and lower in the H19 gene in AOA embryos than those without AOA. No significant difference was found either among blastocysts or among placenta tissues regardless of AOA. The methylation levels of the three genes in blastocysts were very similar to those in the placenta. Compared to conventional ICSI, AOA changed imprinting methylation rates at H19 and SNRPN in cleavage embryos but not in the blastocyst stage and placenta. We recommend that blastocyst transfer should be considered for patients undergoing AOA during in vitro fertilization.


2021 ◽  
Author(s):  
Erik A Koppes ◽  
Marie A Johnson ◽  
James J Moresco ◽  
Patrizia Luppi ◽  
Dale W Lewis ◽  
...  

Prader-Willi syndrome (PWS) is a multisystem disorder caused by loss of expression of a cluster of paternally-expressed, imprinted genes. Neonatal failure to thrive is followed by childhood-onset hyperphagia, obesity, neurobehavioral abnormalities, and hormonal deficits. Prior evidence from a mouse model with a deletion of the orthologous PWS-gene domain identified abnormal pancreatic islet development with deficient insulin secretion, hypoglucagonemia, and postnatal onset of progressive, lethal hypoglycemia. To investigate the role of PWS-genes in β-cell secretory function, we used CRISPR/Cas9 genome-editing to generate isogenic, clonal INS-1 insulinoma lines with 3.16 Mb deletions of the silent, maternal (control) or active, paternal (PWS) alleles. PWS β-cells showed a significant reduction in basal and glucose-stimulated insulin secretion, signifying a deficiency in cell-autonomous insulin secretion. Parallel proteome and transcriptome studies revealed reduced levels of secreted peptides and twelve endoplasmic reticulum (ER) chaperones, including HSPA5 and HSP90B1. In contrast to the dosage compensation previously seen for ER chaperones in Hspa5 or Hsp90b1 gene knockouts, compensation is precluded by the widespread deficiency of ER chaperones in PWS β-cells. Consistent with the reduced ER chaperone levels, PWS INS-1 β-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. These results suggest that a chronic deficit of ER chaperones in PWS β-cells leads to a delay in ER transit and/or folding of insulin and other cargo along the secretory pathway. The findings illuminate the pathophysiological basis of hormone deficits in PWS and implicate PWS-imprinted genes in β-cell secretory pathway function.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhichao Zhang ◽  
Shuai Yu ◽  
Jing Li ◽  
Yanbin Zhu ◽  
Siqi Jiang ◽  
...  

Abstract Background Genomic imprinting is an epigenetic phenomenon mainly occurs in endosperm of flowering plants. Genome-wide identification of imprinted genes have been completed in several dicot Cruciferous plant and monocot crops. Results Here, we analyzed global patterns of allelic gene expression in developing endosperm of sunflower which belongs to the composite family. Totally, 691 imprinted loci candidates were identified in 12 day-after-pollination sunflower endosperm including 79 maternally expressed genes (MEG) and 596 paternally expressed genes (PEG), 6 maternally expressed noncoding RNAs (MNC) and 10 paternally expressed noncoding RNAs (PNC). And a clear clustering of imprinted genes throughout the rapeseed genome was identified. Generally, imprinting in sunflower is conserved within a species, but intraspecific variation also was detected. Limited loci in sunflower are imprinted in other several different species. The DNA methylation pattern around imprinted genes were investigated in embryo and endosperm tissues. In CG context, the imprinted genes were significantly associated with differential methylated regions exhibiting hypomethylation in endosperm and hypermethylation in embryo, which indicated that the maternal demethylation in CG context potentially induce the genomic imprinting in endosperm. Conclusion Our study would be helpful for understanding of genomic imprinting in plants and provide potential basis for further research in imprinting in sunflower.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jian Zhou ◽  
Tong Cheng ◽  
Xing Li ◽  
Jie Hu ◽  
Encheng Li ◽  
...  

Abstract Background Early lung cancer detection remains a clinical challenge for standard diagnostic biopsies due to insufficient tumor morphological evidence. As epigenetic alterations precede morphological changes, expression alterations of certain imprinted genes could serve as actionable diagnostic biomarkers for malignant lung lesions. Results Using the previously established quantitative chromogenic imprinted gene in situ hybridization (QCIGISH) method, elevated aberrant allelic expression of imprinted genes GNAS, GRB10, SNRPN and HM13 was observed in lung cancers over benign lesions and normal controls, which were pathologically confirmed among histologically stained normal, paracancerous and malignant tissue sections. Based on the differential imprinting signatures, a diagnostic grading model was built on 246 formalin-fixed and paraffin-embedded (FFPE) surgically resected lung tissue specimens, tested against 30 lung cytology and small biopsy specimens, and blindly validated in an independent cohort of 155 patients. The QCIGISH diagnostic model demonstrated 99.1% sensitivity (95% CI 97.5–100.0%) and 92.1% specificity (95% CI 83.5–100.0%) in the blinded validation set. Of particular importance, QCIGISH achieved 97.1% sensitivity (95% CI 91.6–100.0%) for carcinoma in situ to stage IB cancers with 100% sensitivity and 91.7% specificity (95% CI 76.0–100.0%) noted for pulmonary nodules with diameters ≤ 2 cm. Conclusions Our findings demonstrated the diagnostic value of epigenetic imprinting alterations as highly accurate translational biomarkers for a more definitive diagnosis of suspicious lung lesions.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1912
Author(s):  
Bastien Ducreux ◽  
Jean Frappier ◽  
Céline Bruno ◽  
Abiba Doukani ◽  
Magali Guilleman ◽  
...  

Early life periconceptional exposures during assisted reproductive technology (ART) procedures could alter the DNA methylation profiles of ART children, notably in imprinted genes and repetitive elements. At the genome scale, DNA methylation differences have been reported in ART conceptions at birth, but it is still unclear if those differences remain at childhood. Here, we performed an epigenome-wide DNA methylation association study using Illumina InfiniumEPIC BeadChip to assess the effects of the mode of conception on the methylome of buccal cells from 7- to 8-year-old children (48 children conceived after ART or naturally (control, CTL)) and according to the embryo culture medium in which they were conceived. We identified 127 differentially methylated positions (DMPs) and 16 differentially methylated regions (DMRs) (FDR < 0.05) with low delta beta differences between the two groups (ART vs. CTL). DMPs were preferentially located inside promoter proximal regions and CpG islands and were mostly hypermethylated with ART. We highlighted that the use of distinct embryo culture medium was not associated with DNA methylation differences in childhood. Overall, we bring additional evidence that children conceived via ART display limited genome-wide DNA methylation variation compared with those conceived naturally.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiran Bar ◽  
Dan Vershkov ◽  
Gal Keshet ◽  
Elyad Lezmi ◽  
Naama Meller ◽  
...  

AbstractIn mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity.


2021 ◽  
pp. 113919
Author(s):  
Olivia R. Gutherz ◽  
Maya Deyssenroth ◽  
Qian Li ◽  
Ke Hao ◽  
Joseph L. Jacobson ◽  
...  

2021 ◽  
pp. 1-42
Author(s):  
Aatish Mahajan ◽  
Divika Sapehia ◽  
Beenish Rahat ◽  
Jyotdeep Kaur

Abstract Maternal folic acid and vitamin B12 (B12) status during pregnancy influence fetal growth. This study elucidated the effect of altered dietary ratio of folic acid and B12 on the regulation of H19/IGF2 locus in C57BL/6 mice. Female mice were fed diets with 9 combinations of folic acid and B12 for 4 weeks. They were mated and the offspring born (F1) were continued on the same diet for 6 weeks post-weaning and were allowed to mate. The placenta and fetal (F2) tissues were collected at day 20 of gestation. H19 overexpression observed under dietary deficiency of folate combined with normal B12 (BNFD) was associated with an increased expression of miR-675 in maternal and fetal tissues. Insulin-like growth factor 2 (IGF2), expression was decreased under folic acid deficient conditions combined with normal, deficient or over-supplemented state of B12 (BNFD, BDFD, BOFD) in fetal tissues along with B12 deficiency combined with normal folic acid (BDFN) in the placenta. The altered expression of imprinted genes under folic acid deficient conditions was related to decreased serum levels of folate and body weight (F1). Hypermethylation observed at the H19 differentially methylated region (DMR) (in BNFD) might be responsible for the decreased expression of IGF2 in female fetal tissues. IGF2 DMR2 was found to be hypomethylated and associated with low serum B12 levels with B12 deficiency in fetal tissues. Results suggest that the altered dietary ratio of folic acid and B12 affects the in-utero development of the fetus in association with altered epigenetic regulation of H19/IGF2 locus.


Sign in / Sign up

Export Citation Format

Share Document