γδ t cell
Recently Published Documents


TOTAL DOCUMENTS

907
(FIVE YEARS 221)

H-INDEX

73
(FIVE YEARS 11)

2022 ◽  
Vol 142 ◽  
pp. 50-62
Author(s):  
Payal Damani-Yokota ◽  
Fengqiu Zhang ◽  
Alexandria Gillespie ◽  
Haeree Park ◽  
Amy Burnside ◽  
...  

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 117
Author(s):  
Anke Janssen ◽  
Eline van Diest ◽  
Anna Vyborova ◽  
Lenneke Schrier ◽  
Anke Bruns ◽  
...  

In the complex interplay between inflammation and graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-HSCT), viral reactivations are often observed and cause substantial morbidity and mortality. As toxicity after allo-HSCT within the context of viral reactivations is mainly driven by αβ T cells, we describe that by delaying αβ T cell reconstitution through defined transplantation techniques, we can harvest the full potential of early reconstituting γδ T cells to control viral reactivations. We summarize evidence of how the γδ T cell repertoire is shaped by CMV and EBV reactivations after allo-HSCT, and their potential role in controlling the most important, but not all, viral reactivations. As most γδ T cells recognize their targets in an MHC-independent manner, γδ T cells not only have the potential to control viral reactivations but also to impact the underlying hematological malignancies. We also highlight the recently re-discovered ability to recognize classical HLA-molecules through a γδ T cell receptor, which also surprisingly do not associate with GVHD. Finally, we discuss the therapeutic potential of γδ T cells and their receptors within and outside the context of allo-HSCT, as well as the opportunities and challenges for developers and for payers.


2022 ◽  
Author(s):  
Linjie Yuan ◽  
Xianqiang Ma ◽  
Yunyun Yang ◽  
Xin Li ◽  
Weiwei Ma ◽  
...  

Tumor cells and pathogen-infected cells are presented to human γδ T cells based on "inside-out" signaling in which metabolites called phosphoantigens (pAgs) inside target cells are recognized by the intracellular domain of a butyrophilin protein (BTN3A1), leading to an extracellular conformational change. Here, we report that pAgs function as molecular "glues" that initiate a heteromeric association between the intracellular domains of BTN3A1 and the structurally similar BTN2A1. Working with both exogenous and endogenous pAgs, we used x-ray crystallography, mutational studies, cellular assays, synthetic probe as well as molecular dynamics investigations to determine how pAgs glue intracellular BTN3A1 and BTN2A1 together for the "inside-out" signaling that triggers γδ T cell activation. This γδ T cell-specific mode of antigen sensing creates opportunities for the development of alternative immunotherapies against cancer and infectious diseases that do not involve αβ T cells.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6212
Author(s):  
Susann Schönefeldt ◽  
Tamara Wais ◽  
Marco Herling ◽  
Satu Mustjoki ◽  
Vasileios Bekiaris ◽  
...  

γδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17. Their rapid cytotoxic nature makes them attractive cells for use in anti-cancer immunotherapies. However, upon transformation, γδ T cells can give rise to highly aggressive lymphomas. These rare malignancies often display poor patient survival, and no curative therapies exist. In this review, we discuss the diverse roles of γδ T cells in immune surveillance and response, with a particular focus on cancer immunity. We summarise the intriguing dichotomy between pro- and anti-tumour functions of γδ T cells in solid and haematological cancers, highlighting the key subsets involved. Finally, we discuss potential drivers of γδ T-cell transformation, summarising the main γδ T-cell lymphoma/leukaemia entities, their clinical features, recent advances in mapping their molecular and genomic landscapes, current treatment strategies and potential future targeting options.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010103
Author(s):  
Timothy H. Chu ◽  
Camille Khairallah ◽  
Jason Shieh ◽  
Rhea Cho ◽  
Zhijuan Qiu ◽  
...  

Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity.


2021 ◽  
Vol 9 (12) ◽  
pp. e003339
Author(s):  
Huaishan Wang ◽  
Hui Chen ◽  
Shujing Liu ◽  
Jie Zhang ◽  
Hezhe Lu ◽  
...  

BackgroundGamma delta (γδ) T cells are attractive effector cells for cancer immunotherapy. Vδ2 T cells expanded by zoledronic acid (ZOL) are the most commonly used γδ T cells for adoptive cell therapy. However, adoptive transfer of the expanded Vδ2 T cells has limited clinical efficacy.MethodsWe developed a costimulation method for expansion of Vδ2 T cells in PBMCs by activating γδ T-cell receptor (γδTCR) and Toll-like receptor (TLR) 7/8 using isopentenyl pyrophosphate (IPP) and resiquimod, respectively, and tested the functional markers and antitumoral effects in vitro two-dimensional two-dimensional and three-dimensional spheroid models and in vivo models. Single-cell sequencing dataset analysis and reverse-phase protein array were employed for mechanistic studies.ResultsWe find that Vδ2 T cells expanded by IPP plus resiquimod showed significantly increased cytotoxicity to tumor cells with lower programmed cell death protein 1 (PD-1) expression than Vδ2 T cells expanded by IPP or ZOL. Mechanistically, the costimulation enhanced the activation of the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (PKB/Akt)–the mammalian target of rapamycin (mTOR) pathway and the TLR7/8–MyD88 pathway. Resiquimod stimulated Vδ2 T-cell expansion in both antigen presenting cell dependent and independent manners. In addition, resiquimod decreased the number of adherent inhibitory antigen-presenting cells (APCs) and suppressed the inhibitory function of APCs by decreasing PD-L1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in these cells during in vitro Vδ2 T-cell expansion. Finally, we showed that human Vδ2 T cells can be expanded from PBMCs and spleen of humanized NSG mice using IPP plus resiquimod or ZOL, demonstrating that humanized mice are a promising preclinical model for studying human γδ T-cell development and function.ConclusionsVδ2 T cells expanded by IPP and resiquimod demonstrate improved anti-tumor function and have the potential to increase the efficacy of γδ T cell-based therapies.


2021 ◽  
Vol 13 (622) ◽  
Author(s):  
Anouk von Borstel ◽  
Priyanka Chevour ◽  
Daniel Arsovski ◽  
Jelte M. M. Krol ◽  
Lauren J. Howson ◽  
...  

2021 ◽  
Vol 118 (49) ◽  
pp. e2110288118
Author(s):  
Michael T. Rice ◽  
Anouk von Borstel ◽  
Priyanka Chevour ◽  
Wael Awad ◽  
Lauren J. Howson ◽  
...  

Unlike conventional αβ T cells, γδ T cells typically recognize nonpeptide ligands independently of major histocompatibility complex (MHC) restriction. Accordingly, the γδ T cell receptor (TCR) can potentially recognize a wide array of ligands; however, few ligands have been described to date. While there is a growing appreciation of the molecular bases underpinning variable (V)δ1+ and Vδ2+ γδ TCR-mediated ligand recognition, the mode of Vδ3+ TCR ligand engagement is unknown. MHC class I–related protein, MR1, presents vitamin B metabolites to αβ T cells known as mucosal-associated invariant T cells, diverse MR1-restricted T cells, and a subset of human γδ T cells. Here, we identify Vδ1/2− γδ T cells in the blood and duodenal biopsy specimens of children that showed metabolite-independent binding of MR1 tetramers. Characterization of one Vδ3Vγ8 TCR clone showed MR1 reactivity was independent of the presented antigen. Determination of two Vδ3Vγ8 TCR-MR1-antigen complex structures revealed a recognition mechanism by the Vδ3 TCR chain that mediated specific contacts to the side of the MR1 antigen-binding groove, representing a previously uncharacterized MR1 docking topology. The binding of the Vδ3+ TCR to MR1 did not involve contacts with the presented antigen, providing a basis for understanding its inherent MR1 autoreactivity. We provide molecular insight into antigen-independent recognition of MR1 by a Vδ3+ γδ TCR that strengthens an emerging paradigm of antibody-like ligand engagement by γδ TCRs.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2372
Author(s):  
Fanny Martini ◽  
Eric Champagne

γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.


Sign in / Sign up

Export Citation Format

Share Document