cellulose crystallinity
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 27)

H-INDEX

28
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7632
Author(s):  
Magdalena Broda ◽  
Carmen-Mihaela Popescu ◽  
Daniel Ilie Timpu ◽  
Dawid Rowiński ◽  
Edward Roszyk

Large amounts of archaeological wood are often excavated during groundworks in cities and towns. Part of the unearthed artefacts is usually saved, conserved and then presented in museums. However, if the finding contains several similar objects, some of them could potentially be further employed for some other practical purposes. The research aimed to determine the mechanical performance of the remains of wooden water mains excavated at Bóżnicza street in Poznań, Poland and evaluate its potential usefulness for any practical purposes. First, wood density was determined along with its mechanical strength in compression. The density of archaeological wood identified as Scots pine was lower than contemporary pinewood (383 kg × m−3 vs. 572 kg × m−3); therefore, its mechanical properties in compression tests were also lower, as expected, making the wood unsuitable for any practical applications. However, the differences in modulus of elasticity and compressive strength were not justified by the differences in wood density. Further infrared spectroscopy and X-ray diffraction analyses revealed additional differences in chemical composition and cellulose crystallinity between archaeological and contemporary wood. The results indicated the decrease in carbohydrate content and cellulose crystallinity in degraded wood, which, in addition to wood density, apparently contribute to the deterioration in mechanical strength of archaeological wood. The case study of the excavated archaeological wooden pipes shows that they have historical value but are not useful for practical purposes. It also revealed that not only wood density but also its chemical composition and cellulose crystallinity level has a substantial impact on the wood mechanical properties, particularly in compression.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4090
Author(s):  
Luthfi Hakim ◽  
Ragil Widyorini ◽  
Widyanto Dwi Nugroho ◽  
Tibertius Agus Prayitno

The fibrovascular bundle (FVB) in palm plants consists of fiber and vascular tissue. Geometrically, it is a long fiber that can be used as an oriented board raw material. This research aimed to examine the performance of citric acid-bonded orientation boards from modified FVB salacca frond under NaOH + Na2SO3 treatment and the bonding mechanism between the modified FVB frond and citric acid. The results showed that changes in the chemical composition of FVB have a positive effect on the contact angle and increase the cellulose crystallinity index. Furthermore, the mechanical properties of the oriented board showed that 1% NaOH + 0.2% Na2SO3 with 60 min immersion has a higher value compared to other treatments. The best dimension stability was on a board with the modified FVB of 1% NaOH + 0.2% Na2SO3 with 30 and 60 min immersion. The bonding mechanism evaluated by FTIR spectra also showed that there is a reaction between the hydroxyl group in the modified FVB and the carboxyl group in citric acid. This showed that the modified combination treatment of NaOH+Na2SO3 succeeded in increasing the mechanical properties and dimensional stability of the orientation board from the FVB salacca frond.


Resources ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 118
Author(s):  
Jose D. Marin-Batista ◽  
Angel F. Mohedano ◽  
Angeles de la Rubia

This study assessed the breakdown of lignocellulosic biomass (LB) with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]) as a pretreatment to increase the methane yield. The pretreatment was conducted for wheat straw (WS), barley straw (BS), and grape stem (GS) at 120 °C for 120 min, using several LB to [Emim][Ac] ratios (1:1, 1:3, and 1:5 w/w). Pretreatment significantly disrupted the lignocellulose matrix of each biomass into soluble sugars. GS showed the highest sugar yield, which was followed by WS, while BS was slightly hydrolyzed (175.3 ± 2.3, 158.2 ± 5.2, and 51.1 ± 3.1 mg glucose g–1 biomass, respectively). Likewise, the pretreatment significantly reduced the cellulose crystallinity index (CrI) of the resulting solid fractions of GS and WS by 15% and 9%, respectively, but slightly affected the CrI of BS (5%). Thus, BMP tests were only carried out for raw and hydrothermally and [Emim][Ac] (1:5) pretreated GS and WS. The untreated GS and WS showed similar methane yields to those achieved for the solid fraction obtained after pretreatment with an LB to [Emim][Ac] ratio of 1:5 (219 ± 10 and 368 ± 1 mL CH4 g–1 VS, respectively). The methane production of the solid plus liquid fraction obtained after IL pretreatment increased by 1.61- and 1.34-fold compared to the raw GS and WS, respectively.


2021 ◽  
Vol 11 (18) ◽  
pp. 8726
Author(s):  
Oana Florescu ◽  
Robert Hrițac ◽  
Maria Haulică ◽  
Ion Sandu ◽  
Ioana Stănculescu ◽  
...  

An important step in the conservation of old paper documents is the analysis of both the medium and the ink, in an attempt first to determine the extent of deterioration and degradation and then to choose the best preservation and restoration solutions. Our paper focuses on the analysis of three old documents displayed at the ‘Poni-Cernătescu’ Museum in Iaşi City, Romania by optical microscopy (OM), scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX), micro-FTIR spectroscopy and FT-Raman. Thus, the morphology and chemical composition of the paper media and the type of ink, as well as the cellulose crystallinity index were determined. PCA (Principal Component Analysis) was also used while relying on spectra collected by FTIR spectroscopy. We were able to determine the extent of degradation of the documents by corroborating all these findings.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12026
Author(s):  
Abraham Kusi Obeng ◽  
Duangporn Premjet ◽  
Siripong Premjet

Durian (Durio zibethinus Murr.) peel, as agricultural waste, is a potential under-utilized lignocellulosic biomass that is sufficiently available in Thailand. In this study, durian peel from monthong (D. zibethinus Murr. cv. Monthong) and chanee (D.zibethinus Murr. cv. Chanee) were subjected to pretreatment with sodium hydroxide (NaOH) under autoclaving conditions to improve glucose recovery. The effect of NaOH concentration (1%, 2%, 3%, and 4%) and autoclave temperature (110 °C, 120 °C, and 130 °C) was investigated based on the amount of glucose recovered. The optimal NaOH concentration and autoclave temperature were determined to be 2% and 110 °C, respectively, under which maximum glucose (36% and 35% in monthong and chanee peels, respectively) was recovered. Glucose recovery was improved by about 6-fold at the optimal pretreatment condition for both pretreated monthong and chanee when compared to the untreated durian peels. Scanning electron microscopy (SEM) showed great changes to the surface morphology of pretreated durian peel from the two cultivars. X-ray diffraction (XRD) analysis also revealed a rise in cellulose crystallinity index (CrIs) after pretreatment. A combination of mild NaOH concentration and autoclaving is a very effective pretreatment technique for maximum glucose recovery from durian peel.


2021 ◽  
Vol 12 ◽  
Author(s):  
Débora Pagliuso ◽  
Adriana Grandis ◽  
Cristiane Ribeiro de Sousa ◽  
Amanda Pereira de Souza ◽  
Carlos Driemeier ◽  
...  

Cellulosic ethanol is an alternative for increasing the amount of bioethanol production in the world. In Brazil, sugarcane leads the bioethanol production, and to improve its yield, besides bagasse, sugarcane straw is a possible feedstock. However, the process that leads to cell wall disassembly under field conditions is unknown, and understanding how this happens can improve sugarcane biorefinery and soil quality. In the present work, we aimed at studying how sugarcane straw is degraded in the field after 3, 6, 9, and 12 months. Non-structural and structural carbohydrates, lignin content, ash, and cellulose crystallinity were analyzed. The cell wall composition was determined by cell wall fractionation and determination of monosaccharide composition. Non-structural carbohydrates degraded quickly during the first 3 months in the field. Pectins and lignin remained in the plant waste for up to 12 months, while the hemicelluloses and cellulose decreased 7.4 and 12.4%, respectively. Changes in monosaccharide compositions indicated solubilization of arabinoxylan (xylose and arabinose) and β-glucans (β-1,3 1,4 glucan; after 3 months) followed by degradation of cellulose (after 6 months). Despite cellulose reduction, the xylose:glucose ratio increased, suggesting that glucose is consumed faster than xylose. The degradation and solubilization of the cell wall polysaccharides concomitantly increased the level of compounds related to recalcitrance, which led to a reduction in saccharification and an increase in minerals and ash contents. Cellulose crystallinity changed little, with evidence of silica at the latter stages, indicating mineralization of the material. Our data suggest that for better soil mineralization, sugarcane straw must stay in the field for over 1 year. Alternatively, for bioenergy purposes, straw should be used in less than 3 months.


2021 ◽  
Vol 11 (01) ◽  
pp. 1
Author(s):  
Venditias Yudha ◽  
Ferriawan Yudhanto ◽  
Heru Santoso Budi Rochardjo ◽  
Satriawan Dini Hariyanto

Salacca midrib fibers are abundant natural waste in Turi, Sleman Regency, Daerah Istimewa Yogyakarta. Cellulose Microfibers from the salacca midrib fiber has been isolated by mechanical treatment and successfully has good physical characteristics. Cellulose fibers with micro sizes can strengthen the bond effect between the matrix and the fiber due to the vast contact area. The method for isolated cellulose microfibers by mechanical treatment for speed rotation of 5000, 10000 and 15000 rpm. Mechanical stirrer treatment aims to fibrillation and reduces fiber dimensions because of their high rotation. The characterization by XRD, FTIR, and SEM. The XRD results showed that the mechanical stirrer treatment did not damage the crystallinity index of cellulose microfibers. The crystallinity index of the raw material is 64.3%, increased to 79.1% for the microfiber cellulose crystallinity index. Identification of functional groups using FTIR did not show changes in cellulose compounds resulting from mechanical treatment. Morphological observation of fibers by SEM shows that the diameter cellulose microfibers size obtained from salacca midrib fiber ranges 5-10 µm with 100-300 µm in length. Cellulose microfibers have potential materials as reinforcement in the micro composite and extraction into nanocellulose materials.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xinru Li ◽  
Fumin Ma ◽  
Chengping Liang ◽  
Maoyao Wang ◽  
Yan Zhang ◽  
...  

Abstract Background Sugarcane is one of the most crucial energy crops that produces high yields of sugar and lignocellulose. The cellulose crystallinity index (CrI) and lignin are the two kinds of key cell wall features that account for lignocellulose saccharification. Therefore, high-throughput screening of sugarcane germplasm with excellent cell wall features is considered a promising strategy to enhance bagasse digestibility. Recently, there has been research to explore near-infrared spectroscopy (NIRS) assays for the characterization of the corresponding wall features. However, due to the technical barriers of the offline strategy, it is difficult to apply for high-throughput real-time analyses. This study was therefore initiated to develop a high-throughput online NIRS assay to rapidly detect cellulose crystallinity, lignin content, and their related proportions in sugarcane, aiming to provide an efficient and feasible method for sugarcane cell wall feature evaluation. Results A total of 838 different sugarcane genotypes were collected at different growth stages during 2018 and 2019. A continuous variation distribution of the near-infrared spectrum was observed among these collections. Due to the very large diversity of CrI and lignin contents detected in the collected sugarcane samples, seven high-quality calibration models were developed through online NIRS calibration. All of the generated equations displayed coefficient of determination (R2) values greater than 0.8 and high ratio performance deviation (RPD) values of over 2.0 in calibration, internal cross-validation, and external validation. Remarkably, the equations for CrI and total lignin content exhibited RPD values as high as 2.56 and 2.55, respectively, indicating their excellent prediction capacity. An offline NIRS assay was also performed. Comparable calibration was observed between the offline and online NIRS analyses, suggesting that both strategies would be applicable to estimate cell wall characteristics. Nevertheless, as online NIRS assays offer tremendous advantages for large-scale real-time screening applications, it could be implied that they are a better option for high-throughput cell wall feature prediction. Conclusions This study, as an initial attempt, explored an online NIRS assay for the high-throughput assessment of key cell wall features in terms of CrI, lignin content, and their proportion in sugarcane. Consistent and precise calibration results were obtained with NIRS modeling, insinuating this strategy as a reliable approach for the large-scale screening of promising sugarcane germplasm for cell wall structure improvement and beyond.


2021 ◽  
Vol 71 (3) ◽  
pp. 283-289
Author(s):  
Yan Yang ◽  
He Sun ◽  
Shuang Yang ◽  
Wenye Sun ◽  
Ying Zhao ◽  
...  

Abstract To investigate the decay extent of wooden components in the ancient buildings of Danxia Temple, the absorption peak intensities, changes in chemical components, and cellulose crystallinity of red oak (Quercus sp.), birch (Betula sp.), and maple (Pterocarya sp.) wooden components were determined and analyzed using Fourier-transform infrared spectroscopy. The results are as follows: (1) The absorption peak intensities representing cellulose and hemicellulose decreased or disappeared obviously in the decayed red oak wood (DROW); on the contrary, those representing lignin increased. The indexes of the content of cellulose, hemicellulose, and cellulose crystallinity also decreased; on the contrary, those of the content of lignin increased. Those results indicated that cellulose and hemicellulose in DROW were largely degraded by brown-rot fungi. (2) The absorption peak intensities representing cellulose and hemicellulose decreased both in the decayed birch wood (DBW) and the decayed maple wood (DMW), whereas those representing lignin increased. The indexes of the content of cellulose, hemicellulose, and cellulose crystallinity also decreased, whereas those of lignin increased. Those results showed that cellulose and hemicellulose in DBW and DMW were seriously harmed not only by insects but also by brown-rot fungi. By comparison, the extent of fungal damage was lower in DMW than in DBW.


Sign in / Sign up

Export Citation Format

Share Document