multivariate statistical techniques
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 89)

H-INDEX

46
(FIVE YEARS 6)

Author(s):  
Jing Wang ◽  
Jinglin Zhou ◽  
Xiaolu Chen

AbstractThe observation data collected from continuous industrial processes usually have two main categories: process data and quality data, and the corresponding industrial data analysis is mainly for the two types of data based on the multivariate statistical techniques.


2021 ◽  
Vol 9 (11) ◽  
pp. 1292
Author(s):  
Mohamad Alkhalidi ◽  
Abdalrahman Alsulaili ◽  
Badreyah Almarshed ◽  
Majed Bouresly ◽  
Sarah Alshawish

This study investigates the seasonal and spatial trends in Kuwait’s coastal water’s physical, chemical, and biological parameters by applying multivariate statistical techniques, including cluster analysis (CA), principal component/factor analysis (PCA/FA), and the Pearson correlation (PC) method to the average daily reading of water quality parameters from fifteen stations over one year. The investigated parameters are pH, turbidity, chlorophyll-a, conductivity, dissolved oxygen (DO), phycoerythrin, salinity, and temperature. The results show that the coastal water of Kuwait is subjected to high environmental pressure due to natural and human interferences. During 2017, the DO levels were below the threshold limit, and at the same time, the water temperature and salinity were very high, causing a series of fish death events. CA resulted in three different regions based on the turbidity, including high, moderate, and low regions, and three seasons (winter, summer, and autumn). Spring is very short and overlaps with winter and summer. PCA/FA applied on the datasets assisted in extracting and identifying parameters responsible for the variations in the seasons and regions obtained from CA. Additionally, Pearson’s correlation resulted in a strong positive relation between chlorophyll and phycoerythrin in 7 out of the 15 stations. However, at high turbidity regions (stations 1 and 2), chlorophyll concentration was low. Additionally, the negative correlation between DO and temperature was observed at stations with rare human activities.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marina Martínez-Álvaro ◽  
Agostina Zubiri-Gaitán ◽  
Pilar Hernández ◽  
Michael Greenacre ◽  
Alberto Ferrer ◽  
...  

AbstractOur study provides an exhaustive comparison of the microbiome core functionalities (captured by 3,936 microbial gene abundances) between hosts with divergent genotypes for intramuscular lipid deposition. After 10 generations of divergent selection for intramuscular fat in rabbits and 4.14 phenotypic standard deviations (SD) of selection response, we applied a combination of compositional and multivariate statistical techniques to identify 122 cecum microbial genes with differential abundances between the lines (ranging from −0.75 to +0.73 SD). This work elucidates that microbial biosynthesis lipopolysaccharides, peptidoglycans, lipoproteins, mucin components, and NADH reductases, amongst others, are influenced by the host genetic determination for lipid accretion in muscle. We also differentiated between host-genetically influenced microbial mechanisms regulating lipid deposition in body or intramuscular reservoirs, with only 28 out of 122 MGs commonly contributing to both. Importantly, the results of this study are of relevant interest for the efficient development of strategies fighting obesity.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6887
Author(s):  
Małgorzata Szczepanik ◽  
Joanna Szyszlak-Bargłowicz ◽  
Grzegorz Zając ◽  
Adam Koniuszy ◽  
Małgorzata Hawrot-Paw ◽  
...  

The content of heavy metals Cd, Cr, Cu, Fe, Ni, Pb and Zn in ash samples from miscanthus, oak, pine, sunflower husk, wheat straw, and willow ashes burned at 500, 600, 700, 800, 900, and 1000 °C, respectively, was determined. The statistical analysis of the results was based on multivariate methods: hierarchical cluster analysis (HCA), and principal component analysis (PCA), which made it possible to classify the raw materials ashed at different temperatures into the most similar groups, and to study the structure of data variability. Using PCA, three principal components were extracted, which explain more than 88% of the variability of the studied elements. Therefore, it can be concluded that the application of multivariate statistical techniques to the analysis of the results of the study of heavy metal content allowed us to draw conclusions about the influence of biomass properties on its chemical characteristics during combustion.


2021 ◽  
Vol 11 (19) ◽  
pp. 8991
Author(s):  
Semaria Moga Lencha ◽  
Mihret Dananto Ulsido ◽  
Alemayehu Muluneh

The magnitude of pollution in Lake Hawassa has been exacerbated by population growth and economic development in the city of Hawassa, which is hydrologically closed and retains pollutants entering it. This study was therefore aimed at examining seasonal and spatial variations in the water quality of Lake Hawassa Watershed (LHW) and identifying possible sources of pollution using multivariate statistical techniques. Water and effluent samples from LHW were collected monthly for analysis of 19 physicochemical parameters during dry and wet seasons at 19 monitoring stations. Multivariate statistical techniques (MVST) were used to investigate the influences of an anthropogenic intervention on the physicochemical characteristics of water quality at monitoring stations. Through cluster analysis (CA), all 19 monitoring stations were spatially grouped into two statistically significant clusters for the dry and wet seasons based on pollution index, which were designated as moderately polluted (MP) and highly polluted (HP). According to the study results, rivers and Lake Hawassa were moderately polluted (MP), while point sources (industry, hospitals and hotels) were found to be highly polluted (HP). Discriminant analysis (DA) was used to identify the most critical parameters to study the spatial variations, and seven significant parameters were extracted (electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), sodium ion (Na+), and potassium ion (K+) with the spatial variance to distinguish the pollution condition of the groups obtained using CA. Principal component analysis (PCA) was used to qualitatively determine the potential sources contributing to LHW pollution. In addition, three factors determining pollution levels during the dry and wet season were identified to explain 70.5% and 72.5% of the total variance, respectively. Various sources of pollution are prevalent in the LHW, including urban runoff, industrial discharges, diffused sources from agricultural land use, and livestock. A correlation matrix with seasonal variations was prepared for both seasons using physicochemical parameters. In conclusion, effective management of point and non-point source pollution is imperative to improve domestic, industrial, livestock, and agricultural runoff to reduce pollutants entering the Lake. In this regard, proper municipal and industrial wastewater treatment should be complemented, especially, by stringent management that requires a comprehensive application of technologies such as fertilizer management, ecological ditches, constructed wetlands, and buffer strips. Furthermore, application of indigenous aeration practices such as the use of drop structures at critical locations would help improve water quality in the lake watershed.


Sign in / Sign up

Export Citation Format

Share Document