cell culture medium
Recently Published Documents


TOTAL DOCUMENTS

437
(FIVE YEARS 98)

H-INDEX

39
(FIVE YEARS 7)

Author(s):  
Darja Lisjak ◽  
Maša Vozlič ◽  
Uliana Kostiv ◽  
Daniel Horak ◽  
Boris Majaron ◽  
...  

Abstract The increasing interest in upconverting nanoparticles (UCNPs) in biodiagnostics and therapy fuels the development of biocompatible UCNPs platforms. UCNPs are typically nanocrystallites of rare-earth fluorides codoped with Yb3+ and Er3+ or Tm3+. The most studied UCNPs are based on NaYF4 but are not chemically stable in water. They dissolve significantly in the presence of phosphates. To prevent any adverse effects on the UCNPs induced by cellular phosphates, the surfaces of UCNPs must be made chemically inert and stable by suitable coatings. We studied the effect of various phosphonate coatings on chemical stability and in vitro cytotoxicity of the Yb3+,Er3+-codoped NaYF4 UCNPs in human endothelial cells obtained from cellular line Ea.hy926. Cell viability of endothelial cells was determined using the resazurin-based assay after the short-term (15 min), and long-term (24 h and 48 h) incubations with UCNPs dispersed in the cell-culture medium. The coatings were obtained from tertaphosphonic acid (EDTMP), sodium alendronate, and poly(ethylene glycol)-neridronate. Regardless of the coating conditions, 1−2 nm-thick amorphous surface layers were observed on the UCNPs with transmission electron microscopy. The upconversion fluorescence was measured in the dispersions of all synthesized UCNPs. Surface quenching in aqueous suspensions of the UCNPs was reduced by the coatings. The dissolution degree of the UCNPs was determined from the concentration of dissolved fluoride measured with ion-selective electrode after the aging of UCNPs in water, physiological buffer (i.e., phosphate-buffered saline – PBS), and cell-culture medium. The phosphonate coatings prepared at 80 °C significantly suppressed the dissolution of UCNPs in PBS, while only minor dissolution of bare and coated UCNPs was measured in water and cell-culture medium. The viability of human endothelial cells was significantly reduced when incubated with UCNPs, but it increased with the improved chemical stability of UCNPs by the phosphonate coatings with negligible cytotoxicity when coated with EDTMP at 80 °C.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Xiao ◽  
Wen Zhang ◽  
Xiaoting Guo ◽  
Yidong Liu ◽  
Chunxia Hu ◽  
...  

Abstractd-2-Hydroxyglutarate (d-2-HG) is a metabolite involved in many physiological metabolic processes. When d-2-HG is aberrantly accumulated due to mutations in isocitrate dehydrogenase or d-2-HG dehydrogenase, it functions in a pro-oncogenic manner and is thus considered a therapeutic target and biomarker in many cancers. In this study, DhdR from Achromobacter denitrificans NBRC 15125 is identified as an allosteric transcriptional factor that negatively regulates d-2-HG dehydrogenase expression and responds to the presence of d-2-HG. Based on the allosteric effect of DhdR, a d-2-HG biosensor is developed by combining DhdR with amplified luminescent proximity homogeneous assay (AlphaScreen) technology. The biosensor is able to detect d-2-HG in serum, urine, and cell culture medium with high specificity and sensitivity. Additionally, this biosensor is used to identify the role of d-2-HG metabolism in lipopolysaccharide biosynthesis of Pseudomonas aeruginosa, demonstrating its broad usages.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhitao Wang ◽  
Jianxiao Liang ◽  
Shanyong Jiang ◽  
Gang Zhao ◽  
Jianshu Lu ◽  
...  

Objective. To explore the effect of miR-138 on the function of follicular helper T (Tfh) cells and the differentiation of B cells in osteosarcoma. Methods. Clinically collect peripheral blood from osteosarcoma (OS) patients and healthy volunteers (HC), as well as OS tumor tissues (OS tumor) and adjacent tissues with normal histology (normal group). The CD4+CXCR5+Tfh cells of OS patients were screened and isolated by flow cytometry, and the expression of Tfh cell membrane surface antigens PD-1 and CTLA-4 was detected. In addition, qRT-PCR was used to detect the expression of miR-138 in tissues and Tfh cells, and the correlation relationship between miR-138 and PD-1 and CTLA-4 was analyzed. After interference or overexpression of miR-138 in Tfh cells, coculture with untreated B cells was done, and the levels of IL-10, IL-12, IL-21, and INF-γ in Tfh cell culture medium and the levels of IgM, IgG, and IgA in B cell culture medium after coculture were measured by ELISA. Flow cytometry was used to detect the expression of B cell membrane surface antigens CD27 and CD38 after coculture. Results. The rate of PD-1- and CTLA-4 positive cells in the peripheral blood and tissues of the OS group was significantly increased, the expression of miR-138 was significantly reduced, and the expression of miR-138 was negatively correlated with the expression of PD-1 and CTLA-4. In addition, upregulation of miR-138 can lead to a significant increase in the level of IL-10 in the supernatant of Tfh cells and a significant decrease in the levels of IL-12, IL-21, and INF-γ, which in turn leads to increased levels of IgM, IgG, and IgA released by B cells. At the same time, it significantly increases the rate of CD27- and CD38-positive cells and promotes the maturation of B cells. Downregulating miR-138 has the opposite effect. Conclusion. Downregulating the expression of miR-138 in osteosarcoma can improve the dysfunction of CD4+CXCR5+Tfh cells and promote the differentiation of B cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. M. Saleh ◽  
K. P. Lawrence ◽  
S. A. Jones ◽  
A. R. Young

AbstractUVA1 radiation (340–400 nm), especially longwave UVA1 (> 370 nm), is often ignored when assessing sun protection due to its low sunburning potential, but it generates reactive oxygen species (ROS) and is poorly attenuated by sunscreens. This study aimed to investigate if α-tocopherol phosphate, (α-TP) a promising new antioxidant, could protect against long-wave UVA1 induced cell death and scavenge UVA1 induced ROS in a skin cell model. HaCaT keratinocyte cell viability (24 h) was assessed with Alamar Blue and Neutral Red assays. The metabolism of α-TP into α-T, assessed using mass spectrometry, and the compound's radical scavenging efficacy, assessed by the dichlorodihydrofluorescein (H2DCFDA) ROS detection assay, was monitored in HaCaTs. The mechanism of α-TP ROS scavenging was determined using non-cell based DPPH and ORAC assays. In HaCaT keratinocytes, irradiated with 226 J/cm2 UVA1 in low-serum (2%, starved) cell culture medium, pretreatment with 80 µM α-TP significantly enhanced cell survival (88%, Alamar Blue) compared to control, whereas α-T pre-treatment had no effect survival (70%, Alamar Blue). Pre-treatment of cells with 100 μM α-TP or 100 μM α-T before 57 J/cm2 UVA1 also significantly reduced ROS generation over 2 h (24.1% and 23.9% respectively) compared to the control and resulted in α-TP bioconversion into α-T. As α-TP displayed weak antioxidant activity in the cell-free assays thus its photoprotection was assigned to its bioconversion to α-T by cellular phosphatases. Through this mechanism α-TP prevented long-wave UVA1 induced cell death and scavenged UVA1 induced ROS in skin cells when added to the starved cell culture medium before UVA1 exposure by bioconversion into α-T.


Author(s):  
Daniel Wohlfarth ◽  
Veronika Frehtman ◽  
Marcus Müller ◽  
Martin Vogel ◽  
Linh Minh Phuc Phan ◽  
...  

Abstract The oncolytic virus H-1PV is a promising candidate for various cancer treatments. Therefore, production process needs to be optimized and scaled up for future market release. Currently, the virus is produced with minimum essential medium in 10-layer CellSTACK® chambers with limited scalability, requiring a minimum seeding density of 7.9E3 cells/cm2. Production also requires a 5% fetal bovine serum (FBS) supplementation and has a virus yield up to 3.1E7 plaque-forming units (PFU)/cm2. Using the animal-free cell culture medium VP-SFM™ and a new feeding strategy, we demonstrate a yield boost by a mean of 0.3 log while reducing seeding density to 5.0E3 cells/cm2 and cutting FBS supplementation by up to 40% during the production process. Additionally, FBS is completely removed at the time of harvest. Eleven commercial micro- and macrocarriers were screened regarding cell growth, bead-to-bead transfer capability, and virus yield. We present a proof-of-concept study for producing H-1PV on a large scale with the microcarrier Cytodex® 1 in suspension and a macrocarrier for a fixed-bed iCELLis® bioreactor. A carrier-based H-1PV production process combined with an optimized cell culture medium and feeding strategy can facilitate future upscaling to industrial-scale production. Key points • Virus yield increase and FBS-free harvest after switching to cell culture medium VP-SFM™. • We screened carriers for cell growth, bead-to-bead transfer capability, and H-1PV yield. • High virus yield is achieved with Cytodex® 1 and macrocarrier for iCellis® in Erlenmeyer flasks.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andreanne G. Vasconcelos ◽  
Ana Luisa A. N. Barros ◽  
Wanessa F. Cabral ◽  
Daniel C. Moreira ◽  
Ingrid Gracielle M. da Silva ◽  
...  

Abstract Background Self-emulsifying drug delivery systems (SEDDSs) have attracted attention because of their effects on solubility and bioavailability of lipophilic compounds. Herein, a SEDDS loaded with lycopene purified from red guava (nanoLPG) was produced. The nanoemulsion was characterized using dynamic light scattering (DLS), zeta potential measurement, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), lycopene content quantification, radical scavenging activity and colloidal stability in cell culture medium. Then, in vivo toxicity and tissue distribution in orally treated mice and cytotoxicity on human prostate carcinoma cells (DU-145) and human peripheral blood mononuclear cells (PBMC) were evaluated. Results NanoLPG exhibited physicochemical properties with a size around 200 nm, negative zeta-potential, and spherical morphology. The size, polydispersity index, and zeta potential parameters suffered insignificant alterations during the 12 month storage at 5 °C, which were associated with lycopene stability at 5 °C for 10 months. The nanoemulsion showed partial aggregation in cell culture medium at 37 °C after 24 h. NanoLPG at 0.10 mg/mL exhibited radical scavenging activity equivalent to 0.043 ± 0.002 mg Trolox/mL. The in vivo studies did not reveal any significant changes in clinical, behavioral, hematological, biochemical, and histopathological parameters in mice orally treated with nanoLPG at 10 mg/kg for 28 days. In addition, nanoLPG successfully delivered lycopene to the liver, kidney and prostate in mice, improved its cytotoxicity against DU-145 prostate cancer cells—probably by pathway independent on classical necrosis and apoptosis—and did not affect PBMC viability. Conclusions Thus, nanoLPG stands as a promising and biosafe lycopene delivery system for further development of nanotechnology-based health products. Graphical Abstract


2021 ◽  
Author(s):  
Sebastian Freeman ◽  
Karen Kibrler ◽  
Zachary Lipsky ◽  
Sha Jin ◽  
Guy German ◽  
...  

Abstract The ongoing COVID-19 global pandemic has necessitated evaluating various disinfection technologies for reducing viral transmission in public settings. Ultraviolet (UV) radiation can inactivate pathogens and viruses but more insight is needed into the performance of different UV wavelengths and their applications. We observed greater than a 3-log reduction of SARS-CoV-2 infectivity with a dose of 12.5 mJ/cm2 of 254 nm UV light when the viruses were suspended in PBS, while a dose of 25 mJ/cm2 was necessary to achieve a similar reduction when they were in an EMEM culture medium containing 2%(v/v) FBS, highlighting the critical effect of media in which the virus is suspended, given that SARS-CoV-2 is always aerosolized when airborne or deposited on a surface. It was found that SARS-CoV-2 susceptibility (a measure of the effectiveness of the UV light) in a buffer such as PBS was 4.4-fold greater than that in a cell culture medium. Furthermore, we discovered the attenuation of UVC disinfection by amino acids, vitamins, and niacinamide, highlighting the importance of determining UVC dosages under a condition close to aerosols that wrap the viruses. We developed a disinfection model to determine the effect of the environment on UVC effectiveness with three different wavelengths, 222 nm, 254 nm, and 265 nm. An inverse correlation between the liquid absorbance and the viral susceptibility was observed. We found that 222 nm light was most effective at reducing viral infectivity in low absorbing liquids such as PBS, whereas 265 nm light was most effective in high absorbing liquids such as cell culture medium. Viral susceptibility was further decreased in N95 masks with 222 nm light being the most effective. The safety of 222 nm was also studied. We detected changes to the mechanical properties of the stratum corneum of human skins when the 222 nm accumulative exposure exceeded 50 J/cm2.The findings highlight the need to evaluate each UV for a given application, as well as limiting the dose to the lowest dose necessary to avoid unnecessary exposure to the public.


2021 ◽  
Author(s):  
Debbie Burg ◽  
Leila Josefsson ◽  
Saara Mikkonen ◽  
Véronique Chotteau ◽  
Åsa Emmer ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Inès Hamouda ◽  
Cédric Labay ◽  
Uroš Cvelbar ◽  
Maria-Pau Ginebra ◽  
Cristina Canal

AbstractAtmospheric pressure plasma jets have been shown to impact several cancer cell lines, both in vitro and in vivo. These effects are based on the biochemistry of the reactive oxygen and nitrogen species generated by plasmas in physiological liquids, referred to as plasma-conditioned liquids. Plasma-conditioned media are efficient in the generation of reactive species, inducing selective cancer cell death. However, the concentration of reactive species generated by plasma in the cell culture media of different cell types can be highly variable, complicating the ability to draw precise conclusions due to the differential sensitivity of different cells to reactive species. Here, we compared the effects of direct and indirect plasma treatment on non-malignant bone cells (hOBs and hMSCs) and bone cancer cells (SaOs-2s and MG63s) by treating the cells directly or exposing them to previously treated cell culture medium. Biological effects were correlated with the concentrations of reactive species generated in the liquid. A linear increase in reactive species in the cell culture medium was observed with increased plasma treatment time independent of the volume treated. Values up to 700 µM for H2O2 and 140 µM of NO2− were attained in 2 mL after 15 min of plasma treatment in AdvDMEM cell culture media. Selectivity towards bone cancer cells was observed after both direct and indirect plasma treatments, leading to a decrease in bone cancer cell viability at 72 h to 30% for the longest plasma treatment times while maintaining the survival of non-malignant cells. Therefore, plasma-conditioned media may represent the basis for a potentially novel non-invasive technique for bone cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document