spatial evolution
Recently Published Documents


TOTAL DOCUMENTS

645
(FIVE YEARS 190)

H-INDEX

41
(FIVE YEARS 6)

Author(s):  
Ziqiang Ye ◽  
Song Song ◽  
Runfei Zhong

Regional Climatic Comfort Index (CCI) deteriorated significantly due to the climate change and anthropogenic interference. Knowledge regarding the long-term temporal dynamics of CCI in typical regions should be strengthened. In this study, we analyze the temporal and spatial evolution of CCI from 1969 to 2018 in Guangdong Province, based on meteorological indicators, including heat, humidity, wind and cloth loading etc.. Additionally, the population exposure to climate unconformity was examined since 1990 with the help of population data. Our study found that: (1) the warming and humidifying of the summer climate served as the main driving force for the continuous deterioration of CCI, with the comfortable days decreased by 1.06d/10a and the extremely muggy days increased by 2.83d/10a; (2) spatially, the lowest climate comfortability concentrated in southwestern Guangdong with more than 50 uncomfortable days each year, while the climate comfortability in northeastern Guangdong tends to deteriorated whit higher rate, which can reach as high as 6d/10a; (3) in summer, the population exposure to uncomfortable climate highly centralized in the Pearl River Delta, Shantou, Jieyang, and the surrounding areas, and both area and population exposure showed increasing trends. Particularly, Shenzhen held the highest growth rate of population exposure with an increase rate of 2.94 million/10a; (4) although the discomfort distribution and deterioration rate vary across the province, the spatial heterogeneity of comfortability is diminishing in Guangdong Province. This study will provide scientific reference for regional urban planning, thermal environment improvement, local resident health risk analysis, and key strategy implementation, etc.


2022 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Katawut Waiyasusri ◽  
Srilert Chotpantarat

Spatial evolution can be traced by land-use change (LUC), which is a frontier issue in the field of geography. Using the limited areas of Koh Chang in Thailand as the research case, this study analyzed the simulation of its spatial evolution from a multi-scenario perspective on the basis of the 1900–2020 thematic mapper/operational land imager (TM/OLI) remote sensing data obtained through the transfer matrix model, and modified LUC and the dynamic land-use change model (Dyna-CLUE). Over the past 30 years, the expansion of recreation areas and urban and built-up land has been very high (2944.44% and 486.99%, respectively) along the western coast of Koh Chang, which replaced the original mangrove forests, orchards, and communities. Logistic regression analysis of important variables affecting LUC revealed that population density variables and coastal plain topography significantly affected LUC, which showed strong β coefficients prominently in the context of a coastal tourist city. The results of the LUC and logistic regression analyses were used to predict future LUCs in the Dyna-CLUE model to simulate 2050 land-use in three scenarios: (1) natural evolution scenario, where a large patch expansion of agricultural land extends along the edge of the entire forest boundary around the island, particularly the southwestern areas of the island that should be monitored; (2) reserved area protection scenario, where the boundary of the conservation area is incorporated into the model, enabling forest preservation in conjunction with tourism development; and (3) recreation area growth scenario, where the southern area is the most susceptible to change at the new road crossing between Khlong Kloi village to Salak Phet village, and where land-use of the recreation area type is expanding. The model-projected LUC maps provide insights into possible changes under multiple pathways, which could help local communities, government agencies, and stakeholders jointly allocate resource planning in a systematic way, so that the development of various infrastructures to realize the potential impact on the environment is a sustainable coastal tourist city development.


Author(s):  
Yi-xin Yang ◽  
Ying-ying Zhang ◽  
Xiao-wan Zhang ◽  
Yi-han Cao ◽  
Jie Zhang

Author(s):  
Junjie Cao ◽  
Yao Zhang ◽  
Taoyuan Wei ◽  
Hui Sun

Facing the increasingly severe friction among the domains of population, resources, economy and environment (PREE) in a system, theoretical guidance for the sustainable development of a PREE system can be obtained by exploring the coordinated development of a PREE system during its temporal–spatial evolution process. Based on the PREE data of 31 provinces in China from 2010 to 2019, this study uses a spatial measurement method to analyze the temporal and spatial evolution characteristics of the PREE systems of China’s provinces. The results show that the overall coordination level of China’s provincial PREE systems fluctuated but improved from moderate imbalance to moderate coordination. However, the differences in the regional coordination level first decreased and then increased. The distribution characteristics of the system coordination level changed from “high in the east and low in the west” to “high in the west and low in the east”, resulting in the “inversion” phenomenon of the system coordination level. The spatial correlation of the coordination level of the PREE system among provinces and cities gradually increased. The coordination level of the PREE system in the eastern, central and western regions was noticeably different, accompanied by different degrees of polarization and showing different dynamic evolution trends. In the analysis of influencing factors, it was found that seven factors, such as per capita GDP, the proportion of environmental pollution control investment to GDP and per capita energy production, promoted the coordinated development of China’s PREE system to varying degrees. The coordinated and stable development of China’s PREE system should be adjusted and optimized from the perspectives of different regions, scales and systems.


2021 ◽  
pp. 1-22
Author(s):  
Guangyu Huang ◽  
Xuejun Feng ◽  
Mili Chen ◽  
Liupeng Jiang ◽  
Haipeng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document