radar systems
Recently Published Documents


TOTAL DOCUMENTS

1950
(FIVE YEARS 475)

H-INDEX

51
(FIVE YEARS 9)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 578
Author(s):  
Jung Min Pak

Automotive radars, which are used for preceding vehicle tracking, have attracted significant attention in recent years. However, the false measurements that occur in cluttered roadways hinders the tracking process in vehicles; thus, it is essential to develop automotive radar systems that are robust against false measurements. This study proposed a novel track formation algorithm to initialize the preceding vehicle tracking in automotive radar systems. The proposed algorithm is based on finite impulse response filtering, and exhibited significantly higher accuracy in highly cluttered environments than a conventional track formation algorithm. The excellent performance of the proposed algorithm was demonstrated using extensive simulations under real conditions.


2022 ◽  
Vol 1215 (1) ◽  
pp. 012009
Author(s):  
V.V. Prokopovich ◽  
A.V. Shafranyuk

Abstract Modeling of broadband and narrowband signal mark detection is widely used for sonar and radar systems. In this work, the problem is considered in relation to hydroacoustics. The paper describes the formation of a stream of correctly detected and false signal marks and calculation of estimates of their parameters, taking into account the antenna characteristics as well as the processing parameters of the system being simulated. Also considered are the realistic distribution of false signal marks by heading angles and the influence of the Doppler effect on the estimation of the mark parameters. The resulting model can be used in simulation systems, in the formation of a stream of detected signal marks, and the development of tracking algorithms. The model can be also used for predictive calculations that determine the probability of detecting signal sources and their characteristics


2022 ◽  
Vol 1 ◽  
pp. 1-4
Author(s):  
Iñigo Liberal ◽  
◽  
José Manuel Pérez-Escudero ◽  

Metamaterial high-impedance surfaces (HISs) are characterized by a boundary condition close to that of aperfect magnetic conductor (PMC). This property has enabled a variety of antenna systems such as low-profileantennas, electromagnetic absorbers and anti-radar systems. Here, we push forward the concept of material-basedhigh-impedance surfaces (MatHISs), where a high-impedance boundary is directly obtained from the materialproperties of doped semiconductors and polar dielectrics at infrared frequencies. Technological advantages ofMatHISs such as fabrication simplicity, large-area deployment and integrability into conformal devices suggestmultiple applications for infrared photonic technologies, including dynamical thermal emitters, optoelectronic devicesand basic research on atomically-thin materials.


Author(s):  
Xiaoyu Liu ◽  
Tong Wang ◽  
Jinming Chen ◽  
Jianxin Wu
Keyword(s):  

2022 ◽  
Vol 1 ◽  
pp. 1-4
Author(s):  
Nelson J. G. Fonseca ◽  

This vision paper provides a brief overview on recent developments related to a new solution of quasi-optical beamformer, referred to as the water drop lens. This parallel plate waveguide beamformer, which is a revisited geodesic lens with a shaped profile, is attracting attention for applications in the millimetre-wave range, where more conventional dielectric lenses prove to be too lossy and standard geodesic lenses are still too bulky. On-going investigations include satellite and terrestrial communication systems, radar systems and imaging systems with wideband operation at centre frequencies ranging from about 20 GHz to over 120 GHz.


Author(s):  
Chia-Hsing YANG ◽  
Ming-Chun LEE ◽  
Ta-Sung LEE ◽  
Hsiu-Chi CHANG

2021 ◽  
Vol 1 ◽  
Author(s):  
Dilan Dhulashia ◽  
Nial Peters ◽  
Colin Horne ◽  
Piers Beasley ◽  
Matthew Ritchie

The use of drones for recreational, commercial and military purposes has seen a rapid increase in recent years. The ability of counter-drone detection systems to sense whether a drone is carrying a payload is of strategic importance as this can help determine the potential threat level posed by a detected drone. This paper presents the use of micro-Doppler signatures collected using radar systems operating at three different frequency bands for the classification of carried payload of two different micro-drones performing two different motions. Use of a KNN classifier with six features extracted from micro-Doppler signatures enabled mean payload classification accuracies of 80.95, 72.50 and 86.05%, for data collected at S-band, C-band and W-band, respectively, when the drone type and motion type are unknown. The impact on classification performance of different amounts of situational information is also evaluated in this paper.


2021 ◽  
Author(s):  
Marcel Stefko ◽  
Silvan Leinss ◽  
Othmar Frey ◽  
Irena Hajnsek

Abstract. The coherent backscatter opposition effect (CBOE) enhances the backscatter intensity of electromagnetic waves by up to a factor of two in a very narrow cone around the direct return direction when multiple scattering occurs in a weakly absorbing, disordered medium. So far, this effect has not been investigated in terrestrial snow in the microwave spectrum. It has also received little attention in scattering models. We present the first characterization of the CBOE in dry snow using ground-based and space-borne bistatic radar systems. For a seasonal snow pack in Ku-band (17.2 GHz), we found backscatter enhancement of 50–60 % (+1.8–2.0 dB) at zero bistatic angle and a peak half-width-at-half-maximum (HWHM) of 0.25°. In X-band (9.65 GHz), we found backscatter enhancement of at least 35 % (+1.3 dB) and an estimated HWHM of 0.12° in the accumulation areas of glaciers in the Jungfrau-Aletsch region, Switzerland. Sampling of the peak shape at different bistatic angles allows estimating the scattering and absorption mean free paths, ΛT and ΛA. In the VV polarization, we obtained ΛT = 0.4 ± 0.1 m and ΛA = 19 ± 12 m at Ku-band, and ΛT = 2.1 ± 0.4 m, ΛA = 21.8 ± 2.7 m at X-band. The HH polarization yielded similar results. The observed backscatter enhancement is thus significant enough to require consideration in backscatter models describing monostatic and bistatic radar experiments. Enhanced backscattering beyond the Earth, on the surface of solar system bodies, has been interpreted as being caused by the presence of water ice. In agreement with this interpretation, our results confirm the presence of the CBOE at X- and Ku-band frequencies in terrestrial snow.


Sign in / Sign up

Export Citation Format

Share Document