dna damage
Recently Published Documents


TOTAL DOCUMENTS

30903
(FIVE YEARS 6713)

H-INDEX

291
(FIVE YEARS 30)

2023 ◽  
Vol 83 ◽  
Author(s):  
B. Bati ◽  
I. Celik ◽  
N. Eray Vuran ◽  
A. Turan ◽  
E. E. Alkan ◽  
...  

Abstract The present study was designed to investigate the effects of Gundelia tournefortii L. plant extract on different tissues in terms of DNA damage, biochemical and antioxidant parameter values in rats with high-calorie diets. With this aim, Wistar albino male rats were divided into 4 groups containing 6 rats each and the study was completed over 12 weeks duration. At the end of the implementation process over the 12 weeks, rats were sacrificed and blood and tissue samples were obtained. Analyses were performed on blood and tissue samples. According to results for DNA damage (8-OHdG), in brain tissue the OG2 group was significantly reduced compared to the NC group. For MDA results in liver tissue, OG1 and OG2 groups were determined to increase by a significant degree compared to the control group, while the OG2 group was also increased significantly compared to the obese group. In terms of the other parameters, comparison between the groups linked to consumption of a high calorie diet (HCD) and administration of Gundelia tournefortii L. in terms of antioxidant activities and serum samples obtained statistically significant results. Gundelia tournefortii L. plant extracts had effects that may be counted as positive on antioxidant parameter activity and were especially identified to improve DNA damage and MDA levels in brain tissues. Additionally, consumption of Gundelia tournefortii L. plant extract in the diet may have antiobesity effects; thus, it should be evaluated for use as an effective weight-loss method and as a new therapeutic agent targeting obesity.


2022 ◽  
Vol 28 (3) ◽  
pp. 348-364
Author(s):  
Josieli R Colares ◽  
Renata M Hartmann ◽  
Elizângela G Schemitt ◽  
Sandielly R B Fonseca ◽  
Marilda S Brasil ◽  
...  

2022 ◽  
Author(s):  
Ninel Miriam Vainshelbaum ◽  
Kristine Salmina ◽  
Bogdan I Gerashchenko ◽  
Marija Lazovska ◽  
Pawel Zayakin ◽  
...  

The Circadian Clock (CC) drives the normal cell cycle and reciprocally regulates telomere elongation. However, it can be deregulated in cancer, embryonic stem cells (ESC) and the early embryo. Here, its role in the resistance of cancer cells to genotoxic treatments was assessed in relation to whole-genome duplication (WGD) and telomere regulation. We first evaluated the DNA damage response of polyploid cancer cells and observed a similar impact on the cell cycle to that seen in ESC - overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, and coupling telomere erosion to accelerated cell senescence, favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Next, we revealed a positive correlation between cancer WGD and deregulation of CC assessed by bioinformatics on 11 primary cancer datasets (rho=0.83; p<0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by recombination and return their depolyploidised mitotic offspring to TERT-dependent telomere regulation. Through depolyploidisation and the CC "death loop", the telomeres and Hayflick limit count are thus again renewed. This mechanism along with similar inactivity of the CC in early embryos supports a life-cycle (embryonic) concept of cancer.


Author(s):  
Heba Bassiony ◽  
Akmal A. El-Ghor ◽  
Taher A. Salaheldin ◽  
Salwa Sabet ◽  
Mona M. Mohamed

AbstractNanoparticles can potentially cause adverse effects on cellular and molecular level. The present study aimed to investigate the histopathological changes and DNA damage effects of magnetite nanoparticles (MNPs) on female albino mice model with Ehrlich solid carcinoma (ESC). Magnetite nanoparticles coated with L-ascorbic acid (size ~ 25.0 nm) were synthesized and characterized. Mice were treated with MNPs day by day, intraperitoneally (IP), intramuscularly (IM), or intratumorally (IT). Autopsy samples were taken from the solid tumor, thigh muscle, liver, kidney, lung, spleen, and brain for assessment of iron content, histopathological examination, and genotoxicity using comet assay. The liver, spleen, lung, and heart had significantly higher iron content in groups treated IP. On the other hand, tumor, muscles, and the liver had significantly higher iron content in groups treated IT. MNPs induced a significant DNA damage in IT treated ESC. While a significant DNA damage was detected in the liver of the IP treated group, but no significant DNA damage could be detected in the brain. Histopathological findings in ESC revealed a marked tumor necrosis, 50% in group injected IT but 40% in group injected IP and 20% only in untreated tumors. Other findings include inflammatory cell infiltration, dilatation, and congestion of blood vessels of different organs of treated groups in addition to appearance of metastatic cancer cells in the liver of non-treated tumor group. MNPs could have an antitumor effect but it is recommended to be injected intratumorally to be directed to the tumor tissues and reduce its adverse effects on healthy tissues.


2022 ◽  
Vol 23 (2) ◽  
pp. 878
Author(s):  
Laura C. Paterson ◽  
Amy Festarini ◽  
Marilyne Stuart ◽  
Fawaz Ali ◽  
Christie Costello ◽  
...  

Theoretical evaluations indicate the radiation weighting factor for thermal neutrons differs from the current International Commission on Radiological Protection (ICRP) recommended value of 2.5, which has radiation protection implications for high-energy radiotherapy, inside spacecraft, on the lunar or Martian surface, and in nuclear reactor workplaces. We examined the relative biological effectiveness (RBE) of DNA damage generated by thermal neutrons compared to gamma radiation. Whole blood was irradiated by 64 meV thermal neutrons from the National Research Universal reactor. DNA damage and erroneous DNA double-strand break repair was evaluated by dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay with low doses ranging 6–85 mGy. Linear dose responses were observed. Significant DNA aberration clustering was found indicative of high ionizing density radiation. When the dose contribution of both the 14N(n,p)14C and 1H(n,γ)2H capture reactions were considered, the DCA and the CBMN assays generated similar maximum RBE values of 11.3 ± 1.6 and 9.0 ± 1.1, respectively. Consequently, thermal neutron RBE is approximately four times higher than the current ICRP radiation weighting factor value of 2.5. This lends support to bimodal peaks in the quality factor for RBE neutron energy response, underlining the importance of radiological protection against thermal neutron exposures.


Author(s):  
Iain A. Richard ◽  
Joshua T. Burgess ◽  
Kenneth J. O’Byrne ◽  
Emma Bolderson

The proteins within the Poly-ADP Ribose Polymerase (PARP) family encompass a diverse and integral set of cellular functions. PARP1 and PARP2 have been extensively studied for their roles in DNA repair and as targets for cancer therapeutics. Several PARP inhibitors (PARPi) have been approved for clinical use, however, while their efficacy is promising, tumours readily develop PARPi resistance. Many other members of the PARP protein family share catalytic domain homology with PARP1/2, however, these proteins are comparatively understudied, particularly in the context of DNA damage repair and tumourigenesis. This review explores the functions of PARP4,6-16 and discusses the current knowledge of the potential roles these proteins may play in DNA damage repair and as targets for cancer therapeutics.


2022 ◽  
Author(s):  
Yoshie Yachi ◽  
Takeshi Kai ◽  
Yusuke Matsuya ◽  
Yuho Hirata ◽  
Yuji Yoshii ◽  
...  

Abstract Magnetic resonance-guided radiotherapy (MRgRT) has been developed and installed in recent decades for external radiotherapy in several clinical facilities. The Lorentz force modulates dose distribution by charged particles in MRgRT; however, the impact by this force on low-energy electron track structure and early DNA damage induction remain unclear. In this study, we estimated features of electron track structure and biological effects in a static magnetic field (SMF) using a general-purpose Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS) that enables us to simulate low-energy electrons down to 1 meV by track-structure mode. The macroscopic dose distributions by electrons above approximately 300 keV initial energy in liquid water are changed by both perpendicular and parallel SMFs against the incident direction, indicating that the Lorentz force plays an important role in calculating dose within tumours. Meanwhile, DNA damage estimation based on the spatial patterns of atomic interactions indicates that the initial yield of DNA double-strand breaks (DSBs) is independent of the SMF intensity. The DSB induction is predominantly attributed to the secondary electrons below a few tens of eV, which are not affected by the Lorentz force. Our simulation study suggests that treatment planning for MRgRT can be made with consideration of only changed dose distribution.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 273
Author(s):  
Benjamin M. Freyter ◽  
Mutaz A. Abd Al-razaq ◽  
Anna Isermann ◽  
Anne Dietz ◽  
Omid Azimzadeh ◽  
...  

Irreparable DNA damage following ionizing radiation (IR) triggers prolonged DNA damage response and induces premature senescence. Cellular senescence is a permanent state of cell-cycle arrest characterized by chromatin restructuring, altered nuclear morphology and acquisition of secretory phenotype, which contributes to senescence-related inflammation. However, the mechanistic connections for radiation-induced DNA damage that trigger these senescence-associated hallmarks are poorly understood. In our in vitro model of radiation-induced senescence, mass spectrometry-based proteomics was combined with high-resolution imaging techniques to investigate the interrelations between altered chromatin compaction, nuclear envelope destabilization and nucleo-cytoplasmic chromatin blebbing. Our findings confirm the general pathophysiology of the senescence-response, with disruption of nuclear lamin organization leading to extensive chromatin restructuring and destabilization of the nuclear membrane with release of chromatin fragments into the cytosol, thereby activating cGAS-STING-dependent interferon signaling. By serial block-face scanning electron microscopy (SBF-SEM) whole-cell datasets were acquired to investigate the morphological organization of senescent fibroblasts. High-resolution 3-dimensional (3D) reconstruction of the complex nuclear shape allows us to precisely visualize the segregation of nuclear blebs from the main nucleus and their fusion with lysosomes. By multi-view 3D electron microscopy, we identified nanotubular channels formed in lamin-perturbed nuclei of senescent fibroblasts; the potential role of these nucleo-cytoplasmic nanotubes for expulsion of damaged chromatin has to be examined.


2022 ◽  
Author(s):  
Ievgeniia Gazo ◽  
Ravindra Naraine ◽  
Ievgen Lebeda ◽  
Aleš Tomčala ◽  
Mariola Dietrich ◽  
...  

Abstract DNA damage during early life stages may have a negative effect on embryo development, inducing malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. We analyzed the survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress-response, which could be applied in toxicological studies on fish embryo. This study is the first complex analysis of the DNA damage response in endangered sturgeons.


Sign in / Sign up

Export Citation Format

Share Document