emission inventories
Recently Published Documents


TOTAL DOCUMENTS

547
(FIVE YEARS 139)

H-INDEX

56
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Steven J. Smith ◽  
Erin E. McDuffie ◽  
Molly Charles

Abstract. Emissions into the atmosphere of fine particulates, their precursors, and precursors to tropospheric ozone, not only impact human health and ecosystems, but also impact the climate by altering Earth’s radiative balance. Accurately quantifying these impacts across local to global scales, historically, and in future scenarios, requires emission inventories that are accurate, transparent, complete, comparable, and consistent. In an effort to better quantify the emissions and impacts of these pollutants, also called short-lived climate forcers (SLCFs), the Intergovernmental Panel on Climate Change (IPCC) is developing a new SLCF emissions methodology report. This report would supplement existing IPCC reporting guidance on greenhouse gas (GHG) emissions inventories, currently used by inventory compilers to fulfill national reporting requirements under the United Nations Framework Convention on Climate Change (UNFCCC) and new requirements of the Enhanced Transparency Framework (ETF) under the Paris Agreement starting in 2024. We review the relevant issues, including how air pollutant and GHG inventory activities have historically been structured, as well as potential benefits, challenges, and recommendations for coordinating GHG and air pollutant inventory efforts. We argue that while there are potential benefits to increasing coordination between air pollutant and GHG inventory development efforts, we also caution that there are differences in appropriate methodologies and applications that must jointly be considered.


Nature Food ◽  
2022 ◽  
Author(s):  
Monica Crippa ◽  
Efisio Solazzo ◽  
Diego Guizzardi ◽  
Francesco N. Tubiello ◽  
Adrian Leip

2022 ◽  
Vol 22 (1) ◽  
pp. 395-418
Author(s):  
Xiao Lu ◽  
Daniel J. Jacob ◽  
Haolin Wang ◽  
Joannes D. Maasakkers ◽  
Yuzhong Zhang ◽  
...  

Abstract. We quantify methane emissions and their 2010–2017 trends by sector in the contiguous United States (CONUS), Canada, and Mexico by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric methane observations. The inversion uses as a prior estimate the national anthropogenic emission inventories for the three countries reported by the US Environmental Protection Agency (EPA), Environment and Climate Change Canada (ECCC), and the Instituto Nacional de Ecología y Cambio Climático (INECC) in Mexico to the United Nations Framework Convention on Climate Change (UNFCCC) and thus serves as an evaluation of these inventories in terms of their magnitudes and trends. Emissions are optimized with a Gaussian mixture model (GMM) at 0.5∘×0.625∘ resolution and for individual years. Optimization is done analytically using lognormal error forms. This yields closed-form statistics of error covariances and information content on the posterior (optimized) estimates, allows better representation of the high tail of the emission distribution, and enables construction of a large ensemble of inverse solutions using different observations and assumptions. We find that GOSAT and in situ observations are largely consistent and complementary in the optimization of methane emissions for North America. Mean 2010–2017 anthropogenic emissions from our base GOSAT + in situ inversion, with ranges from the inversion ensemble, are 36.9 (32.5–37.8) Tg a−1 for CONUS, 5.3 (3.6–5.7) Tg a−1 for Canada, and 6.0 (4.7–6.1) Tg a−1 for Mexico. These are higher than the most recent reported national inventories of 26.0 Tg a−1 for the US (EPA), 4.0 Tg a−1 for Canada (ECCC), and 5.0 Tg a−1 for Mexico (INECC). The correction in all three countries is largely driven by a factor of 2 underestimate in emissions from the oil sector with major contributions from the south-central US, western Canada, and southeastern Mexico. Total CONUS anthropogenic emissions in our inversion peak in 2014, in contrast to the EPA report of a steady decreasing trend over 2010–2017. This reflects offsetting effects of increasing emissions from the oil and landfill sectors, decreasing emissions from the gas sector, and flat emissions from the livestock and coal sectors. We find decreasing trends in Canadian and Mexican anthropogenic methane emissions over the 2010–2017 period, mainly driven by oil and gas emissions. Our best estimates of mean 2010–2017 wetland emissions are 8.4 (6.4–10.6) Tg a−1 for CONUS, 9.9 (7.8–12.0) Tg a−1 for Canada, and 0.6 (0.4–0.6) Tg a−1 for Mexico. Wetland emissions in CONUS show an increasing trend of +2.6 (+1.7 to +3.8)% a−1 over 2010–2017 correlated with precipitation.


Author(s):  
Anwar Al Shami ◽  
Elissar Al Aawar ◽  
Abdelkader Baayoun ◽  
Najat A. Saliba ◽  
Jonilda Kushta ◽  
...  

AbstractPhysically based computational modeling is an effective tool for estimating and predicting the spatial distribution of pollutant concentrations in complex environments. A detailed and up-to-date emission inventory is one of the most important components of atmospheric modeling and a prerequisite for achieving high model performance. Lebanon lacks an accurate inventory of anthropogenic emission fluxes. In the absence of a clear emission standard and standardized activity datasets in Lebanon, this work serves to fill this gap by presenting the first national effort to develop a national emission inventory by exhaustively quantifying detailed multisector, multi-species pollutant emissions in Lebanon for atmospheric pollutants that are internationally monitored and regulated as relevant to air quality. Following the classification of the Emissions Database for Global Atmospheric Research (EDGAR), we present the methodology followed for each subsector based on its characteristics and types of fuels consumed. The estimated emissions encompass gaseous species (CO, NOx, SO2), and particulate matter (PM2.5 and PM10). We compare totals per sector obtained from the newly developed national inventory with the international EDGAR inventory and previously published emission inventories for the country for base year 2010 presenting current discrepancies and analyzing their causes. The observed discrepancies highlight the fact that emission inventories, especially for data-scarce settings, are highly sensitive to the activity data and their underlying assumptions, and to the methodology used to estimate the emissions.


Author(s):  
Benjamin de Foy ◽  
James J. Schauer

Abstract Identifying air pollutant emissions has played a key role in improving air quality and hence the health of billions of people around the world. This has been done using research from multiple directions, two of which are the development of emission inventories and mapping air pollution using satellite remote sensing. The TROPOspheric Monitoring Instrument (TROPOMI) has been providing high resolution vertical column densities of nitrogen dioxide since late October 2018. Using the flux divergence method and a Gaussian Mixture Model, we identify peak emission hotspots over 4 cities in South Asia: Dhaka, Kolkata, Delhi and Lahore. We analyze data from November 2018 to March 2021 and focus on the three dry seasons (November to March) for which retrievals are available. The retrievals are shown to have sufficient spatial resolution to identify individual point and area sources. We further analyze the length scale and eccentricities of the hotspots to better characterize the emission sources. The TROPOMI emission estimates are compared with the EDGAR global emission inventory and the REAS regional inventory. This reveals areas of agreement but also significant discrepancies that should enable improvements and refinements of the inventories in the future. For example, urban emissions are underestimated while power generation emissions are overestimated. Some areas of light manufacturing cause significant signatures in TROPOMI retrievals but are mostly missing from the inventories. The spatial resolution of the TROPOMI instrument is now sufficient to provide detailed feedback to developers of emission inventories as well as to inform policy decisions at the urban to regional scale.


2022 ◽  
Vol 14 (1) ◽  
pp. 220
Author(s):  
Yiwen Hu ◽  
Zengliang Zang ◽  
Dan Chen ◽  
Xiaoyan Ma ◽  
Yanfei Liang ◽  
...  

Emission inventories are important for modeling studies and policy-making, but the traditional “bottom-up” emission inventories are often outdated with a time lag, mainly due to the lack of accurate and timely statistics. In this study, we developed a “top-down” approach to optimize the emission inventory of sulfur dioxide (SO2) using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and a three-dimensional variational (3DVAR) system. The observed hourly surface SO2 concentrations from the China National Environmental Monitoring Center were assimilated and used to estimate the gridded concentration forecast errors of WRF-Chem. The concentration forecast errors were then converted to the emission errors by assuming a linear response from SO2 emission to concentration by grids. To eliminate the effects of modelling errors from aspects other than emissions, a strict data-screening process was conducted. Using the Multi-Resolution Emission Inventory for China (MEIC) 2010 as the a priori emission, the emission inventory for October 2015 over Mainland China was optimized. Two forecast experiments were conducted to evaluate the performance of the SO2 forecast by using the a priori (control experiment) and optimized emissions (optimized emission experiment). The results showed that the forecasts with optimized emissions typically outperformed the forecasts with 2010 a priori emissions in terms of the accuracy of the spatial and temporal distributions. Compared with the control experiment, the bias and root-mean-squared error (RMSE) of the optimized emission experiment decreased by 71.2% and 25.9%, and the correlation coefficients increased by 50.0%. The improvements in Southern China were more significant than those in Northern China. For the Sichuan Basin, Yangtze River Delta, and Pearl River Delta, the bias and RMSEs decreased by 76.4–94.2% and 29.0–45.7%, respectively, and the correlation coefficients increased by 23.5–53.4%. This SO2 emission optimization methodology is computationally cost-effective.


2021 ◽  
Author(s):  
Joannes Maasakkers ◽  
Daniel Varon ◽  
Aldís Elfarsdóttir ◽  
Jason McKeever ◽  
Dylan Jervis ◽  
...  

As atmospheric methane concentrations increase at record pace, it is critical to identify individual emission sources with high potential for mitigation. Landfills are responsible for large methane emissions that can be readily abated but have been sparsely observed. Here we leverage the synergy between satellite instruments with different spatiotemporal coverage and resolution to detect and quantify emissions from individual landfill facilities. We use the global surveying Tropospheric Monitoring Instrument (TROPOMI) to identify large emission hot spots, and then zoom in with high-resolution target-mode observations from the GHGSat instrument suite to identify the responsible facilities and characterize their emissions. Using this ‘tip and cue’ approach, we detect and analyze strongly emitting landfills (3-29 t hr−1) in Buenos Aires (Argentina), Delhi (India), Lahore (Pakistan), and Mumbai (India). We find that city-level emissions are 1.6-2.8 times larger than reported in commonly used emission inventories and that the landfills contribute 5-47% of those emissions. Our work demonstrates how complementary satellites enable global detection, identification, and monitoring of methane super-emitters at the facility-level.


2021 ◽  
Author(s):  
Philippe Thunis ◽  
Alain Clappier ◽  
Enrico Pisoni ◽  
Bertrand Bessagnet ◽  
Jeroen Kuenen ◽  
...  

Abstract. Some studies show that significant uncertainties affect emission inventories, which may impeach conclusions based on air quality model results. These uncertainties result from the need to compile a wide variety of information to estimate an emission inventory. In this work, we propose and discus a screening method to compare two emission inventories, with the overall goal of improving the quality of emission inventories by feeding back the results of the screening to inventory compilers who can check the inconsistencies found and where applicable resolve errors. The method targets three different aspects: 1) the total emissions assigned to a series of large geographical area, countries in our application; 2) the way these country total emissions are shared in terms of sector of activity and 3) the way inventories spatially distribute emissions from countries to smaller areas, cities in our application. The first step of the screening approach consists in sorting the data and keep only emission contributions that are relevant enough. In a second step, the method identifies, among those significant differences, the most important ones that are evidence of methodological divergence and/or errors that can be found and resolved in at least one of the inventories. The approach has been used to compare two versions of the CAMS-REG European scale inventory over 150 cities in Europe for selected activity sectors. Among the 4500 screened pollutant-sectors, about 450 were kept as relevant among which 46 showed inconsistencies. The analysis indicated that these inconsistencies were almost equally arising from large scale reporting and spatial distribution differences. They mostly affect SO2 and PM coarse emissions from the industrial and residential sectors. The screening approach is general and can be used for other types of applications related to emission inventories.


Sign in / Sign up

Export Citation Format

Share Document