mixed surfactant
Recently Published Documents


TOTAL DOCUMENTS

492
(FIVE YEARS 47)

H-INDEX

48
(FIVE YEARS 3)

2021 ◽  
Vol 901 ◽  
pp. 67-72
Author(s):  
Chein Yhirayha ◽  
Sakchai Wittaya-Areekul ◽  
Tasana Pitaksuteepong

Morus alba stem extract possesses several biological activities. However, skin delivery of the extract is limited by the stratum corneum. In this study, lamellar lyotropic liquid crystal (LLC) was investigated for the potential application in the skin delivery of M. alba stem extract. The four formulations were developed and incorporated with M. alba stem extract at 3% w/w. These formulations were stored at room temperature in light-protected containers for 3 months. The optical pattern under polarized light microscope, viscosity and remaining of the extract were determined. The skin penetration enhancing property of the formulations was investigated using excised porcine ear skin model. The results showed that all formulations remained stable after 3-month storage. The two formulations exhibiting good penetration enhancing properties were F3 consisting of PEG-7 glyceryl cocoate/n-Dodecane/Water/extract (55.29/19.40/22.31/3.00 %w/w) and F4 consisting of mixed Surfactant/n-Dodecane/Water/extract (48.50/4.85/43.65/3.00 %w/w). The mixed surfactant composed of PEG-7 glyceryl cocoate/PEG-40 hydrogenated castor oil/Glyceryl oleate (40/33.24/26.76 %w/w). It can be concluded that the lamellar LLC formulations developed in this study can be used as a carrier for delivering of M. alba stem extract. The components of the formulations which play important roles are the oil and the surfactant.


2021 ◽  
Vol 11 (19) ◽  
pp. 9151
Author(s):  
Virin Kittithammavong ◽  
Ampira Charoensaeng ◽  
Sutha Khaodhiar

Optimal condition-based microemulsion is key to achieving great efficiency in oil removal. One useful empirical equation to predict an optimal condition is a hydrophilic–lipophilic deviation (HLD). However, the K constants of each surfactant should be the same to combine the HLD equations for the mixed surfactant. Recently, a normalized hydrophilic-lipophilic deviation (HLDN) was presented to avoid this limitation. This work sought to determine the phase behaviors and predict the optimal salt concentrations, using HLDN for the mixed surfactant. Sodium dihexyl sulfosuccinate (SDHS) as an anionic surfactant, and alcohol alkyl polyglycol ether (AAE(6EO4PO)) as a nonionic surfactant, were both investigated. Alkanes and diesel were used as a model oil. The results showed that AAE(6EO4PO) enforced both the hydrophilic and the hydrophobic characteristics. The Winsor Type I-III transition was influenced by the ethylene oxide, while the propylene oxide presence affected the Winsor Type III-II inversion. For the HLDN equation, the average interaction term was 1.82 ± 0.86, which markedly showed a strong correlation with the fraction of nonionic surfactant in the mixed systems. The predicted optimal salt concentrations using HLDN of SDHS-AAE(6EO4PO) in the diesel systems were close to the experimental results, with an error of <10% that is significantly beneficial due to the shorter time required for optimal determination.


Author(s):  
Adnan Dahadha ◽  
Mohammed Hassan ◽  
Mohammad Al-Dhoun ◽  
Yazan Batineh ◽  
Marwan Abu-Halaweh

2021 ◽  
Author(s):  
Inga Põldsalu ◽  
Elif Senem Köksal ◽  
Irep Gözen

AbstractSelf-assembled membranes composed of both fatty acids and phospholipids are both permeable for solutes and structurally stable, which was likely an advantageous combination for the development of primitive cells on the early Earth. Here we report on the solid surface-assisted formation of primitive mixed-surfactant membrane compartments, i.e. model protocells, from multilamellar lipid reservoirs composed of different ratios of fatty acids and phospholipids. Similar to the previously discovered enhancement of model protocell formation on solid substrates, we achieve spontaneous multi-step self-transformation of mixed surfactant reservoirs into closed surfactant containers, interconnected via nanotube networks. Some of the fatty acid containing compartments in the networks exhibit colony-like growth. We demonstrate that the compartments generated from fatty acid-containing phospholipid membranes feature increased permeability coefficients for molecules in the ambient solution, for fluorescein up to 7*10-6 cm/s and for RNA up to 3.5*10-6 cm/s. Our findings indicate that surface-assisted autonomous protocell formation and development, starting from mixed amphiphiles, is a plausible scenario for the early stages of the emergence of primitive cells.


Sign in / Sign up

Export Citation Format

Share Document