convective boundary conditions
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 61)

H-INDEX

29
(FIVE YEARS 6)

2021 ◽  
Author(s):  
M. Ferdows ◽  
Bader Alshuraiaan ◽  
Nayema Islam Nima

Abstract This paper discusses an investigation of the influence of dispersion impact on mixed convection flow over a horizontal cone within a non-Darcy porous medium subjected to convective boundary conditions. By imposing appropriate similarity transformations, the nonlinear partial differential equations governing flow, temperature, concentration, and microbe fields are reduced to a system of ordinary differential equations, which are then solved using the MATLAB BVP4C function. In a few circumstances, the research is brought to a strong conclusion by comparing the findings of the current study to previously published works. Mixed convection parameter λ, buoyancy parameters N1,N2, Lewis parameter Le, bioconvection lewis parameter Lb, Bioconvection peclet number Pe, Biot number Bi, Biot number of Mass transfer Bi,m and also Biot number of motile microorganism transfer Bi,n are all numerically calculated for various values of the dimensionless parameters of the problem. The results also reveal that, in the presence of dispersion effects, these parameters greatly influence the heat, mass, and motile microorganism transfer rates, as well as the corresponding velocity, temperature, concentration, and motile microorganism profiles.


Author(s):  
Imran Ullah

Fluid heating and cooling is significant in a variety of industries, including power generation and transportation. Improvements in the thermal conductivity of the base fluid can also help in heat transmission. For this purpose, the effects of magneto hydrodynamics (MHD) and thermal radiation on mixed convection flow of Williamson nanofluid across a stretched sheet embedded in a porous medium in the presence of slip and convective boundary conditions is investigated. The Boungiorno model is adopted to analyze the impact of various dimensionless parameters on velocity, temperature, and nanoparticle concentration in the presence of slip and convective boundary conditions. The nonlinear governing equations are non-dimensionalized using similarity transformations, and the Keller box technique is utilized to solve them numerically. The current code is validated by generating numerical results for wall shear stress and compared them to previously published results. The comparison demonstrates that the outcomes are extremely similar. The results reveal that in the presence of a porous media, raising the magnetic and slip parameters reduced the nanofluid's velocity. It is also noticed that by increasing the radiation parameter, the heat and mass transfer rates on the surface of the stretching sheet are improved. In the presence of convective boundary conditions, the effect of Brownian motion and thermophoresis parameters on nanoparticle concentration was observed to be more profound.


Author(s):  
K.V. Prasad ◽  
Hanumesh Vaidya ◽  
Fateh Mebarek-Oudina ◽  
Rajashekhar Choudhari ◽  
Kottakkaran Sooppy Nisar ◽  
...  

The current work provides the optimal homotopic analytical methodology for the steady circulation over a non-isothermal radially stretched Riga plate/disc unit. The attributes of the heat, along with the mass transfer process, are assessed in the existence of variable transport and magnetic features. Radial stretched Riga disc is considered along with additional realistic boundary heating conditions, namely, prescribed surface temperature as well as prescribed surface concentration, convective boundary conditions and also zero mass flux concentration on the surface area of the Riga disc. The model tracks Brownian motion as well as the thermal diffusion of nanoparticles in fluid circulation all at once. Regulating equations, which are highly coupled, are changed right into non-dimensional equations using appropriate transformations of similarity. Through assembling series solutions, the resulting framework is planned and examined. Graphic summaries are offered for the rheological qualities of various parameters in size for velocity, temperature, as well as nanoparticles. The modified Hartman number improves the velocity distribution and reduces the temperature distribution in both prescribed surface temperature and convective boundary condition cases. The effect of the chemical reaction parameter shows the reduced concentration distribution for the prescribed surface temperature case. In contrast, it is precisely the opposite in the convective boundary condition case.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kamran Ahmed ◽  
Tanvir Akbar ◽  
Taseer Muhammad

This article is concerned with the fluid mechanics of MHD steady 2D flow of Williamson fluid over a nonlinear stretching curved surface in conjunction with homogeneous-heterogeneous reactions with convective boundary conditions. An effective similarity transformation is considered that switches the nonlinear partial differential equations riveted to ordinary differential equations. The governing nonlinear coupled differential equations are solved by using MATLAB bvp4c code. The physical features of nondimensional Williamson fluid parameter λ , power-law stretching index m , curvature parameter K , Schmidt number Sc , magnetic field parameter M , Prandtl number Pr , homogeneous reaction strength k 1 , heterogeneous reaction strength k 2 , and Biot number γ are presented through the graphs. The tabulated form of results is obtained for the skin friction coefficient. It is noted that both the homogeneous and heterogeneous reaction strengths reduced the concentration profile.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nur Syahirah Wahid ◽  
Norihan Md Arifin ◽  
Najiyah Safwa Khashi'ie ◽  
Ioan Pop ◽  
Norfifah Bachok ◽  
...  

Purpose The purpose of this paper is to numerically investigate the hybrid nanofluid flow with the imposition of magnetohydrodynamic (MHD) and radiation effects alongside the convective boundary conditions over a permeable stretching/shrinking surface. Design/methodology/approach The mathematical model is formulated in the form of partial differential equations (PDEs) and are then transformed into the form of ordinary differential equations (ODEs) by using the similarity variables. The deriving ODEs are solved numerically by using the bvp4c solver in MATLAB software. Stability analysis also has been performed to determine the stable solution among the dual solutions obtain. For method validation purposes, a comparison of numerical results has been made with the previous studies. Findings The flow and the heat transfer of the fluid at the boundary layer are described through the plot of the velocity profile, temperature profile, skin friction coefficient and local Nusselt number that are presented graphically. Dual solutions are obtained, but only the first solution is stable. For the realizable solution at the shrinking surface, the proliferation of nanoparticle volume fraction (copper) and magnetic (magnetohydrodynamics) parameters can impede the boundary layer separation. Also, Biot number could enhance the temperature profile and the heat transfer rate at the shrinking surface region. The incrementation of 0.1% of Biot number has enhanced the heat transfer rate by approximately 0.1% and the incrementation of 0.5% volume fraction for copper has reduced the heat transfer rate by approximately 0.17%. Originality/value The presented model and numerical results are original and new. It can be used as a future reference for further investigation and related practical application. The main contribution of this investigation includes giving the initial prediction and providing the numerical data for the other researchers for their future reference regarding the impacts of nanoparticles volumetric concentration towards the main physical quantities of interest in the presence of magnetic and radiation parameters with the convective boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document