reactive metabolites
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 49)

H-INDEX

52
(FIVE YEARS 4)

2022 ◽  
Vol 23 (2) ◽  
pp. 909
Author(s):  
Derek R. Boyd ◽  
Narain D. Sharma ◽  
Paul J. Stevenson ◽  
Patrick Hoering ◽  
Christopher C. R. Allen ◽  
...  

Enzymatic oxidations of thiophenes, including thiophene-containing drugs, are important for biodesulfurization of crude oil and drug metabolism of mono- and poly-cyclic thiophenes. Thiophene oxidative dearomatization pathways involve reactive metabolites, whose detection is important in the pharmaceutical industry, and are catalyzed by monooxygenase (sulfoxidation, epoxidation) and dioxygenase (sulfoxidation, dihydroxylation) enzymes. Sulfoxide and epoxide metabolites of thiophene substrates are often unstable, and, while cis-dihydrodiol metabolites are more stable, significant challenges are presented by both types of metabolite. Prediction of the structure, relative and absolute configuration, and enantiopurity of chiral metabolites obtained from thiophene enzymatic oxidation depends on the substrate, type of oxygenase selected, and molecular docking results. The racemization and dimerization of sulfoxides, cis/trans epimerization of dihydrodiol metabolites, and aromatization of epoxides are all factors associated with the mono- and di-oxygenase-catalyzed metabolism of thiophenes and thiophene-containing drugs and their applications in chemoenzymatic synthesis and medicine.


Author(s):  
Kaili Wu ◽  
Hong Pan ◽  
Yi Li ◽  
Linyan Huang ◽  
Chao Fang ◽  
...  

2021 ◽  
Vol 23 ◽  
Author(s):  
Zhengyu Zhang ◽  
Ying Peng ◽  
Jiang Zheng

: Reactive metabolites (RMs) are products generated from the metabolism of endogenous and exogenous substances. RMs are characterized as electrophilic species chemically reactive to nucleophiles. Those nucleophilic species may be nitrogen-containing bio-molecules, including macro-biomolecules, such as protein and DNA, and small biomolecules, i.e., amino acids (AAs) and biogenic amines (BAs). AAs and BAs are essential endogenous nitrogen-containing compounds required for normal development, metabolism, and physiological functions in organisms, through participating in the intracellular replication, transcription, translation, division and proliferation, DNA and protein synthesis, regulation of apoptosis, and intercellular communication activities. These biological amines containing an active lone pair of electrons on the electronegative nitrogen atom would be the proper N-nucleophiles to be attacked by the abovementioned RMs. This review covers an overview of adductions of AAs and BAs with varieties of RMs. These RMs are formed from metabolic activation of furans, naphthalene, benzene, and products of lipid peroxidation. This article is designed to provide readers with a better understanding of biochemical mechanisms of toxic action.


Author(s):  
Rohit Pal ◽  
Karanvir Singh ◽  
Shah Alam Khan ◽  
Pooja Chawla ◽  
Bhupinder Kumar ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Bernd Rattay ◽  
Ralf A. Benndorf

Drug-induced agranulocytosis is a life-threatening side effect that usually manifests as a severe form of neutropenia associated with fever or signs of sepsis. It can occur as a problem in the context of therapy with a wide variety of drug classes. Numerous drugs are capable of triggering the rare idiosyncratic form of agranulocytosis, which, unlike agranulocytosis induced by cytotoxic drugs in cancer chemotherapy, is characterised by “bizzare” type B or hypersensitivity reactions, poor predictability and a mainly low incidence. The idiosyncratic reactions are thought to be initiated by chemically reactive drugs or reactive metabolites that react with proteins and may subsequently elicit an immune response, particularly directed against neutrophils and their precursors. Cells or organs that exhibit specific metabolic and biotransformation activity are therefore frequently affected. In this review, we provide an update on the understanding of drug-induced idiosyncratic agranulocytosis. Using important triggering drugs as examples, we will summarise and discuss the chemical, the biotransformation-related, the mechanistic and the therapeutic basis of this clinically relevant and undesirable side effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Zhang ◽  
Yu Chen ◽  
Yue Wan ◽  
Yueshui Zhao ◽  
Qinglian Wen ◽  
...  

Oxidative stress caused by an imbalance between the production and elimination of reactive metabolites and free radicals can lead to the development of a variety of diseases. Over the past years, with the development of science and technology, circular RNA (circRNA) has been found to be closely associated with oxidative stress, which plays an important role in the process of oxidative stress. Currently, the understanding of circRNAs in the mechanism of oxidative stress is limited. In this review, we described the relationship between oxidative stress and circRNAs, the circRNAs related to oxidative stress, and the role of circRNAs in promoting or inhibiting the occurrence and development of diseases associated with the oxidative stress system.


2021 ◽  
Vol 22 ◽  
Author(s):  
Kehan Zhang ◽  
Yilin Li ◽  
Yao Fu ◽  
Tiantian Cui ◽  
Qian Wang ◽  
...  

Background: Herbal medicine Angelica dahurica is widely employed for the treatment of rheumatism and pain relief in China. Oxypeucedanin is a major component of the herb. Objectives : The objectives of this study are aimed at the investigation of mechanism-based inactivation of CYP2B6 and CYP2D6 by oxypeucedanin, characterization of the reactive metabolites associated with the enzyme inactivation, and identification of the P450s participating in the bioactivation of oxypeucedanin. Methods : Oxypeucedanin was incubated with liver microsomes or recombinant CYPs2B6 and 2D6 under designed conditions, and the enzyme activities were measured by monitoring the generation of the corresponding products. The resulting reactive intermediates were trapped with GSH and analyzed by LC-MS/MS. Results : Microsomal incubation with oxypeucedanin induced a time-, concentration-, and NADPH-dependent inhibition of CYPs2B6 and 2D6 with kinetic values of KI/kinact 1.82 µM/0.07 min-1 (CYP2B6) and 8.47 µM/0.044 min-1 (CYP2D6), respectively. Ticlopidine and quinidine attenuated the observed time-dependent enzyme inhibitions. An epoxide and/or γ-ketoenal intermediate(s) derived from oxypeucedanin was/were trapped in microsomal incubations. CYP3A4 was the primary enzyme involved in the bioactivation of oxypeucedanin. Conclusion : Oxypeucedanin was a mechanism-based inactivator of CYP2B6 and CYP2D6. An epoxide and/or γ-ketoenal intermediate(s) may be responsible for the inactivation of the two enzymes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ibrahim Chikowe ◽  
Alfred Chipanda Phiri ◽  
Kirios Patrick Mbewe ◽  
Dunstan Matekenya

Abstract Background Drug-induced toxicity is one of the problems that have negatively impacted on the well-being of populations throughout the world, including Malawi. It results in unnecessary hospitalizations, retarding the development of the country. This study assessed the Malawi Essential Medicines List (MEML) for structural alerts and reactive metabolites with the potential for drug-induced toxicities. Methods This in-silico screening study used StopTox, ToxAlerts and LD-50 values toxicity models to assess the MEML drugs. A total of 296 drugs qualified for the analysis (those that had defined chemical structures) and were screened in each software programme. Each model had its own toxicity endpoints and the models were compared for consensus of their results. Results In the StopTox model, 86% of the drugs had potential to cause at least one toxicity including 55% that had the potential of causing eye irritation and corrosion. In ToxAlerts, 90% of the drugs had the potential of causing at least one toxicity and 72% were found to be potentially reactive, unstable and toxic. In LD-50, 70% of the drugs were potentially toxic. Model consensus evaluation results showed that the highest consensus was observed between ToxAlerts and StopTox (80%). The overall consensus amongst the three models was 57% and statistically significant (p < 0.05). Conclusions A large number of drugs had the potential to cause various systemic toxicities. But the results need to be interpreted cautiously since the clinical translation of QSAR-based predictions depends on many factors. In addition, inconsistencies have been reported between screening results amongst different models.


Sign in / Sign up

Export Citation Format

Share Document