acid excretion
Recently Published Documents


TOTAL DOCUMENTS

1172
(FIVE YEARS 88)

H-INDEX

53
(FIVE YEARS 7)

Author(s):  
Daniel W. Montgomery ◽  
Garfield T. Kwan ◽  
William G. Davison ◽  
Jennifer Finlay ◽  
Alex Berry ◽  
...  

Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2-1 kPa CO2 (2,000 - 10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid-base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ∼1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ∼40 minutes, thus restoring haemoglobin-O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ∼2 hours, which is one of the fastest acid-base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3− in blood, which increased from ∼4 to ∼22 mM. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid-base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3− and pH, likely because reduced environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid-base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.


Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0002292021
Author(s):  
Virginia L. Hood ◽  
Kevan M. Sternberg ◽  
Desiree de Waal ◽  
John R. Asplin ◽  
Carley Mulligan ◽  
...  

Background: The odds of nephrolithiasis increase with more metabolic syndrome (met-s) traits. We evaluated associations of metabolic and dietary factors from urine studies and stone composition with met-s traits in a large cohort of stone-forming patients. Methods: Patients >18 years, who were evaluated for stones with 24 h urine collections, July 2009-December 2018, had records reviewed retrospectively. Patient factors, laboratory values and diagnoses were identified within 6 months of urine collection and stone composition within 1 year. Four groups with 0, 1, 2, > 3 met-s traits (hypertension, obesity, dyslipidemia, diabetes) were evaluated. Trends across groups were tested using linear contrasts in analysis of variance and analysis of covariance. Results: 1473 patients met inclusion criteria (835 with stone composition). Met-s groups were 0=684, 1=425, 2=211, 3 and 4 =153. There were no differences among groups for urine volume, calcium or ammonium excretion. There was a significant trend (p<0.001) for more met-s traits being associated with decreasing urine pH, increasing age, calculated dietary protein, urine uric acid, oxalate, citrate, titratable acid phosphate, net acid excretion and uric acid supersaturation. The ratio of ammonium to net acid excretion did not differ among the groups. After adjustment for protein intake, the fall in urine pH remained strong, while the upward trend in acid excretion was lost. Calcium oxalate stones were most common, but there was a trend for more uric acid (p<0.001) and fewer calcium phosphate (p=0.09) and calcium oxalate stones (p=0.01) with more met-s traits. Conclusions: Stone forming patients with met-s have a defined pattern of metabolic and dietary risk factors that contribute to an increased risk of stone formation including higher acid excretion, largely the result of greater protein intake, and lower urine pH.


2021 ◽  
Vol 12 ◽  
Author(s):  
George C. Kapetanakis ◽  
Christos Gournas ◽  
Martine Prévost ◽  
Isabelle Georis ◽  
Bruno André

Microbial species occupying the same ecological niche or codeveloping during a fermentation process can exchange metabolites and mutualistically influence each other’s metabolic states. For instance, yeast can excrete amino acids, thereby cross-feeding lactic acid bacteria unable to grow without an external amino acid supply. The yeast membrane transporters involved in amino acid excretion remain poorly known. Using a yeast mutant overproducing and excreting threonine (Thr) and its precursor homoserine (Hom), we show that excretion of both amino acids involves the Aqr1, Qdr2, and Qdr3 proteins of the Drug H+-Antiporter Family (DHA1) family. We further investigated Aqr1 as a representative of these closely related amino acid exporters. In particular, structural modeling and molecular docking coupled to mutagenesis experiments and excretion assays enabled us to identify residues in the Aqr1 substrate-binding pocket that are crucial for Thr and/or Hom export. We then co-cultivated yeast and Lactobacillus fermentum in an amino-acid-free medium and found a yeast mutant lacking Aqr1, Qdr2, and Qdr3 to display a reduced ability to sustain the growth of this lactic acid bacterium, a phenotype not observed with strains lacking only one of these transporters. This study highlights the importance of yeast DHA1 transporters in amino acid excretion and mutualistic interaction with lactic acid bacteria.


Phytomedicine ◽  
2021 ◽  
pp. 153850
Author(s):  
Ruixia Bao ◽  
Qian Chen ◽  
Zheng Li ◽  
Dan Wang ◽  
Yuzheng Wu ◽  
...  

Author(s):  
Priya Vijayvargiya ◽  
Daniel Gonzalez Izundegui ◽  
Gerardo Calderon ◽  
Sarah Tawfic ◽  
Sarah Batbold ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document