static power
Recently Published Documents


TOTAL DOCUMENTS

427
(FIVE YEARS 105)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Eunwoo Baek ◽  
Jaemin Son ◽  
Kyoungah Cho ◽  
Sangsig Kim

Abstract In this paper, we propose a logic-in-memory (LIM) inverter comprising a silicon nanowire (SiNW) n-channel feedback field-effect transistor (n-FBFET) and a SiNW p-channel metal oxide semiconductor field-effect transistor (p-MOSFET). Further, we investigated the hybrid logic and memory operations of the inverter using mixed-mode technology computer-aided design simulations. Our LIM inverter exhibited a high voltage gain of 296.8 (V/V) when transitioning from logic ‘1’ to ‘0’ and 7.9 (V/V) when transitioning from logic ‘0’ to ‘1’, while holding calculated logic at zero input voltage. The energy band diagrams of the n-FBFET structure demonstrated that the holding operation of the inverter was implemented by controlling the positive feedback loop. Moreover, the output logic can remain constant without any supply voltage, resulting in zero static power consumption.


2021 ◽  
Vol 17 (2) ◽  
pp. 23-29
Author(s):  
Denis Molnár ◽  
Miroslav Blatnický ◽  
Ján Dižo

Abstract An electric hoist could be considered as the most important component of an electric overhead crane. Electric hoists are material handling equipment used for lifting, lowering, and transporting materials and products. They are powered by an electric motor and have a controller to adjust the lifting parameters. Three-phase induction motors are most often used as electric lifting motors for bridge cranes. This paper concerns the design of the power of the electric lifting motor for an electric hoist of the single girder bridge crane with the 500 kg load capacity. It represents the design of the electric lifting motor according to a commonly used scheme for the design of electric motors, from the power at a uniform load to the relative load of the motor. Based on the input data, the necessary motor parameters are calculated using Microsoft Excel. The main parameter is the static power of the motor, the calculated value of which is 0.823 kW. Based on the value of this power, a three-phase induction motor 1.1 kW, MS90-4 is selected. This electric lifting motor is suitable for the above-mentioned bridge crane, as it meets the condition of torque overload.


2021 ◽  
Author(s):  
James Wilcoski

This test report documents seismic qualification testing of a Static Power Static Transfer Switch (STS). The STS is a mission-critical unit that will be installed at Eareckson Air Station (EAS), on the island of Shemya, Alaska. Two units were built, one of which was tested on the ERDC-CERL shake table on 10 November 2020, and the other delivered to EAS for installation. This report presents details on the STS configuration, seismic tests conducted, and the performance of the unit. The unit passed the final seismic test and can now confidently be installed at the EAS.


2021 ◽  
Vol 18 (23) ◽  
pp. 721
Author(s):  
Suvajit Roy ◽  
Tapas Kumar Paul ◽  
Radha Raman Pal

This work provides new designs of simple current-mode squaring and square-rooting circuits using multiple-output current controlled current conveyor transconductance amplifier (MO-CCCCTA) as an active building block. Since the proposed circuits need no other external components, they are capable of high-frequency operation and well fitted for IC fabrication. Furthermore, they are insensitive to ambient temperature and their gains can be controlled easily by adjusting the bias currents of MO-CCCCTA. Additionally, the effects of MO-CCCCTA non-idealities on the designed circuits have also been investigated and discussed. Simulation results generated through PSPICE software using TSMC 0.18 µm CMOS process parameters have been presented to justify the theoretical analysis. The static power consumption, bandwidth, and maximum linearity error in dc transfer characteristic measurement for the square-rooting circuit are found to be 0.17 mW, 445.63 MHz and 1.12 %, while for the squaring circuit they are 0.326 mW, 61.15 MHz and 2.38 %, respectively. The application of the reported circuits as a 2-input vector summation circuit has also been included to strengthen the design ideas. HIGHLIGHTS Simple structures of fully integrable current-mode squarers and square-rooters with low component count and lower power dissipation The circuits are insensitive to temperature drift and their gains can be controlled easily by adjusting the bias currents of MO-CCCCTA Bandwidth, static power dissipation, linearity error of square-rooter are 445.63 MHz, 0.17 mW & ≤ 1.12 %; and for the squarer 61.15 MHz, 0.326 mW & 2.38 %, respectively GRAPHICAL ABSTRACT


2021 ◽  
Author(s):  
Bharath Sreenivasulu Vakkalak ◽  
Vadthiya Narendar

Abstract In this paper we have performed scaling performance of asymmetric junctionless (JL) SOI nanowire FET at 10 nm gate length (LG). To study the device electrical performance various DC metrics like SS, DIBL, ION/IOFF ratio are performed. Even at 5 nm, the device has good electrical properties with subthreshold swing (SS) = 64 mV/dec, drain induced barrier lowering (DIBL) = 45 mV/V, and switching ratio (ION/IOFF) = 106 shows a higher level of electrostatic integrity. Moreover, to study scaling flexibility towards analog/RF applications various parameters like transconductance (I), transconductance generation factor (TGF), total gate capacitance (Cgg), and cutoff frequency (fT) are determined. Furthermore, the dynamic power (DP) and static power (SP) consumption of the device with scaling is also presented. The findings of the study show that asymmetric JL nanowire FET is one of the scaling possibilities.


2021 ◽  
Vol 1 (2) ◽  
pp. 121-130
Author(s):  
Tong Tong ◽  
Guoxu Liu ◽  
Yuan Lin ◽  
Shaohang Xu ◽  
Chi Zhang

Beaufort scale of wind force monitoring is the basic content of meteorological monitoring, which is an important means to ensure the safety of production and life by timely warning of natural disasters. As there is a limited battery life for sensors, determining how to reduce power consumption and extend system life is still an urgent problem. In this work, a near-zero power triboelectric wake-up system for autonomous Beaufort scale of wind force monitoring is proposed, in which a rotary TENG is used to convert wind energy into a stored electric energy capacitor. When the capacitor voltage accumulates to the threshold voltage of a transistor, it turns on as an electronic switch and the system wakes up. In active mode, the Beaufort scale of wind force can be judged according to the electric energy and the signal is sent out wirelessly. In standby mode, when there is no wind, the power consumption of the system is only 14 nW. When the wind scale reaches or exceeds light air, the system can switch to active mode within one second and accurately judge the Beaufort scale of wind force within 10 s. This work provided a triboelectric sensor-based wake-up system with ultralow static power consumption, which has great prospects for unattended environmental monitoring, hurricane warning, and big data acquisition.


Sign in / Sign up

Export Citation Format

Share Document