fabrication technique
Recently Published Documents


TOTAL DOCUMENTS

637
(FIVE YEARS 103)

H-INDEX

34
(FIVE YEARS 6)

2021 ◽  
Vol 2120 (1) ◽  
pp. 012037
Author(s):  
S Nalatambi ◽  
K S Oh ◽  
L W Yoon

Abstract A novel chitosan/alginate composite membrane is proposed for the application of greywater treatment. In particular, the effect of stirring speed of mixing chitosan and alginate solution was investigated in this study. The study revealed that 150CSAL and 210CSAL membranes swell significantly compared to CS membrane due to the porous structure of composite membrane. The FTIR spectra revealed that the mixing speed has no influence in terms of molecular interaction between CS and AL due to fixed CS and AL concentrations used in this study. On the other hand, the complexation of AL with CS made outstanding improvement to the dense structure of CS where 180CSAL membrane has UP water flux as high as 90 L/m2h at 2 bar. All membranes have the capability to remove the pollutants present in GW and the COD removal was further improved up to 7% using CSAL membranes. In addition, increasing mixing speed improved the pathogen removal efficiency compared to CS membrane. The treated GW met the non-potable GW reuse standard for turbidity<5 NTU and TSS<20 mg/L. To summarize, the proposed fabrication technique on CSAL membrane showed improved characteristics to CS membrane and has significant performance on GW treatment.


Author(s):  
Livia M. Kalossaka ◽  
Ali A. Mohammed ◽  
Giovanni Sena ◽  
Laura Barter ◽  
Connor Myant

AbstractHydrogels have emerged as leading candidates to reproduce native extracellular matrix. To provide structures and functions similar to tissues in vivo, controlled porosity and vascular networks are required. However, fabrication techniques to introduce these are still limited. In this study we propose stereolithography as a fabrication technique to achieve 3D vascular networks using water-based solvents only. A 3D printable hydrogel is formulated based on available commercial chemicals such as acrylamide (AAm) and polyethylene glycol diacrylate 700 (PEGDA700), with nanocellulose crystals (CNC) as a nanofiller. An optimisation procedure to increase resolution, tune porosity as well as mechanical properties is developed. The results highlight the importance of photoabsorber addition to improve channel resolution. We demonstrate that with the adequate choice of chemicals and fillers for photocurable formulations, structural and functional properties of the fabricated scaffold can be tailored, opening the path for advanced applications. Graphic abstract


2021 ◽  
pp. 2100548
Author(s):  
Sneh Sinha ◽  
Robert Daniels ◽  
Omer Yassin ◽  
Matthew Baczkowski ◽  
Mattewos Tefferi ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1121
Author(s):  
Dongkyu Lee ◽  
Hiroyuki Kitahata ◽  
Hiroaki Ito

Droplet-based microfluidics is a powerful tool for producing monodispersed micrometer-sized droplets with controlled sizes and shapes; thus, it has been widely applied in diverse fields from fundamental science to industries. Toward a simpler method for fabricating microparticles with front–back asymmetry in their shapes, we studied anisotropic gelation of alginate droplets, which occurs inside a flow-focusing microfluidic device. In the proposed method, sodium alginate (NaAlg) aqueous phase fused with a calcium chloride (CaCl2) emulsion dispersed in the organic phase just before the aqueous phase breaks up into the droplets. The fused droplet with a front–back asymmetric shape was generated, and the asymmetric shape was kept after geometrical confinement by a narrow microchannel was removed. The shape of the fused droplet depended on the size of prefused NaAlg aqueous phase and a CaCl2 emulsion, and the front–back asymmetry appeared in the case of the smaller emulsion size. The analysis of the velocity field inside and around the droplet revealed that the stagnation point at the tip of the aqueous phase also played an important role. The proposed mechanism will be potentially applicable as a novel fabrication technique of microparticles with asymmetric shapes.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6250
Author(s):  
Joshua J. Creelman ◽  
Edward A. Luy ◽  
Gabryelle C. H. Beland ◽  
Colin Sonnichsen ◽  
Vincent J. Sieben

A novel microfluidic optical cell is presented that enables simultaneous measurement of both light absorbance and fluorescence on microlitre volumes of fluid. The chip design is based on an inlaid fabrication technique using clear and opaque poly(methyl methacrylate) or PMMA to create a 20.2 mm long optical cell. The inlaid approach allows fluid interrogation with minimal interference from external light over centimeter long path lengths. The performance of the optical cell is evaluated using a stable fluorescent dye: rhodamine B. Excellent linear relationships (R2 > 0.99) are found for both absorbance and fluorescence over a 0.1–10 µM concentration range. Furthermore, the molar attenuation spectrum is accurately measured over the range 460–550 nm. The approach presented here is applicable to numerous colorimetric- or fluorescence-based assays and presents an important step in the development of multipurpose lab-on-chip sensors.


Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 264
Author(s):  
Florin C. Loghin ◽  
José F. Salmerón ◽  
Paolo Lugli ◽  
Markus Becherer ◽  
Aniello Falco ◽  
...  

In this work, we present a do-it-yourself (DIY) approach for the environmental-friendly fabrication of printed electronic devices and sensors. The setup consists only of an automated handwriting robot and pens filled with silver conductive inks. Here, we thoroughly studied the fabrication technique and different optimized parameters. The best-achieved results were 300 mΩ/sq as sheet resistance with a printing resolution of 200 µm. The optimized parameters were used to manufacture fully functional electronics devices: a capacitive sensor and a RFID tag, essential for the remote reading of the measurements. This technique for printed electronics represents an alternative for fast-prototyping and ultra-low-cost fabrication because of both the cheap equipment required and the minimal waste of materials, which is especially interesting for the development of cost-effective sensors.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1089
Author(s):  
Z. Viskadourakis ◽  
E. Tamiolakis ◽  
O. Tsilipakos ◽  
A. C. Tasolamprou ◽  
E. N. Economou ◽  
...  

The capability of three-dimensional printed cut-wire metasurfaces to harvest energy in frequencies around 2.4 GHz, is studied in this paper. Cut-wire metasurfaces were constructed using the Fused Filament Fabrication technique. In particular, two metasurfaces, consisting of different materials were produced. The first was constructed using Polylactic Acid as starting material. Then, the printed metasurface was covered with a thin layer of conductive silver paint, in order to achieve good electrical conductivity. The other metasurface was built using commercially available, conductive Electrifi. Both metasurfaces exhibit good energy harvesting behavior, in the frequency band near 2.4 GHz. Their harvesting efficiency is found to be almost three times lower than that obtained for conventional PCB-printed cut-wire metasurfaces. Nevertheless, all of the experimental results presented here strongly corroborate that three-dimensional-printed metasurfaces can be potentially used to harvest energy in the 2.4 GHz frequency band.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2953
Author(s):  
Simona-Nicoleta Mazurchevici ◽  
Dorin Vaideanu ◽  
Doreen Rapp ◽  
Cristian-Dragos Varganici ◽  
Constantin Cărăușu ◽  
...  

Biodegradable materials investigation has become a necessity and a direction for many researchers worldwide. The main goal is to find sustainable alternatives which gradually replace plastics based on fossil resources from the market, because they are very harmful to the environment and to overall quality of life. In order to get to the stage of obtaining different functional parts from biodegradable materials, it is necessary to study their properties. Taking into account these shortcomings, this paper aims at the mechanical characterization (DMA—Dynamic Mechanical Analysis) and thermal degradation (thermogravimetric analysis (TGA)) of lignin-based biopolymers: Arboform LV3 Nature®, Arboblend® V2 Nature, and Arbofill® Fichte Arboform® LV3 Nature reinforced with aramid fibers. The tested samples were obtained by using the most common fabrication technique for polymers—injection molding. The obtained results for the DMA analysis showed separate polymeric-specific regions for each material and, based on the tanδ values between (0.37–0.54), a series of plastics could be proposed for replacement. The mechano-dynamic behavior could be correlated with the thermal expansion of biopolymers for temperatures higher than 50/55 °C, which are thermally stable up to temperatures of at least 250 °C.


Solar Energy ◽  
2021 ◽  
Vol 224 ◽  
pp. 992-999
Author(s):  
Prabeesh Punathil ◽  
Solidea Zanetti ◽  
Elisa Artegiani ◽  
Vikash Kumar ◽  
Alessandro Romeo

Sign in / Sign up

Export Citation Format

Share Document