toxic rna
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 26)

H-INDEX

9
(FIVE YEARS 2)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Joana R. Loureiro ◽  
Ana F. Castro ◽  
Ana S. Figueiredo ◽  
Isabel Silveira

The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 910
Author(s):  
Maya Braun ◽  
Shachar Shoshani ◽  
Anna Mellul-Shtern ◽  
Yuval Tabach

Pathologic expansions of DNA nucleotide tandem repeats may generate toxic RNA that triggers disease phenotypes. RNA toxicity is the hallmark of multiple expansion repeat disorders, including myotonic dystrophy type 1 (DM1). To date, there are no available disease-modifying therapies for DM1. Our aim was to use drug repositioning to ameliorate the phenotype of affected individuals in a nematode model of DM1. As the RNA interference pathway plays a key role in mediating RNA toxicity, we investigated the effect of aurintricarboxylic acid. We demonstrated that by perturbing the RNA interference machinery using aurintricarboxylic acid, we could annihilate the RNA toxicity and ameliorate the phenotype. As our approach targets a universal disease mechanism, it is potentially relevant for more expansion repeat disorders.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1918
Author(s):  
Lubica Dudakova ◽  
Pavlina Skalicka ◽  
Alice E. Davidson ◽  
Amanda N. Sadan ◽  
Monika Chylova ◽  
...  

The aim of this study was to describe the ocular phenotype in a case with Kearns-Sayre syndrome (KSS) spectrum and to determine if corneal endothelial cell dysfunction could be attributed to other known distinct genetic causes. Herein, genomic DNA was extracted from blood and exome sequencing was performed. Non-coding gene regions implicated in corneal endothelial dystrophies were screened by Sanger sequencing. In addition, a repeat expansion situated within an intron of TCF4 (termed CTG18.1) was genotyped using the short tandem repeat assay. The diagnosis of KSS spectrum was based on the presence of ptosis, chronic progressive external ophthalmoplegia, pigmentary retinopathy, hearing loss, and muscle weakness, which were further supported by the detection of ~6.5 kb mtDNA deletion. At the age of 33 years, the proband’s best corrected visual acuity was reduced to 0.04 in the right eye and 0.2 in the left eye. Rare ocular findings included marked corneal oedema with central corneal thickness of 824 and 844 µm in the right and left eye, respectively. No pathogenic variants in the genes, which are associated with corneal endothelial dystrophies, were identified. Furthermore, the CTG18.1 genotype was 12/33, which exceeds a previously determined critical threshold for toxic RNA foci appearance in corneal endothelial cells.


2021 ◽  
Vol 22 (22) ◽  
pp. 12594
Author(s):  
Virginia Veronica Visconti ◽  
Federica Centofanti ◽  
Simona Fittipaldi ◽  
Elisa Macrì ◽  
Giuseppe Novelli ◽  
...  

Myotonic dystrophy type 1 and 2 (DM1 and DM2) are two multisystemic autosomal dominant disorders with clinical and genetic similarities. The prevailing paradigm for DMs is that they are mediated by an in trans toxic RNA mechanism, triggered by untranslated CTG and CCTG repeat expansions in the DMPK and CNBP genes for DM1 and DM2, respectively. Nevertheless, increasing evidences suggest that epigenetics can also play a role in the pathogenesis of both diseases. In this review, we discuss the available information on epigenetic mechanisms that could contribute to the DMs outcome and progression. Changes in DNA cytosine methylation, chromatin remodeling and expression of regulatory noncoding RNAs are described, with the intent of depicting an epigenetic signature of DMs. Epigenetic biomarkers have a strong potential for clinical application since they could be used as targets for therapeutic interventions avoiding changes in DNA sequences. Moreover, understanding their clinical significance may serve as a diagnostic indicator in genetic counselling in order to improve genotype–phenotype correlations in DM patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Rapisarda ◽  
Ariadna Bargiela ◽  
Beatriz Llamusi ◽  
Isabel Pont ◽  
Roger Estrada-Tejedor ◽  
...  

AbstractIn Myotonic Dystrophy type 1 (DM1), a non-coding CTG repeats rare expansion disease; toxic double-stranded RNA hairpins sequester the RNA-binding proteins Muscleblind-like 1 and 2 (MBNL1 and 2) and trigger other DM1-related pathogenesis pathway defects. In this paper, we characterize four d-amino acid hexapeptides identified together with abp1, a peptide previously shown to stabilize CUG RNA in its single-stranded conformation. With the generalized sequence cpy(a/t)(q/w)e, these related peptides improved three MBNL-regulated exon inclusions in DM1-derived cells. Subsequent experiments showed that these compounds generally increased the relative expression of MBNL1 and its nuclear-cytoplasmic distribution, reduced hyperactivated autophagy, and increased the percentage of differentiated (Desmin-positive) cells in vitro. All peptides rescued atrophy of indirect flight muscles in a Drosophila model of the disease, and partially rescued muscle function according to climbing and flight tests. Investigation of their mechanism of action supports that all four compounds can bind to CUG repeats with slightly different association constant, but binding did not strongly influence the secondary structure of the toxic RNA in contrast to abp1. Finally, molecular modeling suggests a detailed view of the interactions of peptide-CUG RNA complexes useful in the chemical optimization of compounds.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sonia Coni ◽  
Federica A Falconio ◽  
Marta Marzullo ◽  
Marzia Munafò ◽  
Benedetta Zuliani ◽  
...  

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1136
Author(s):  
Marilou H. Barrios ◽  
Alexandra L. Garnham ◽  
Andrew D. Foers ◽  
Lesley Cheng-Sim ◽  
Seth L. Masters ◽  
...  

Small extracellular vesicles (SEVs) such as exosomes are released by multiple cell types. Originally believed to be a mechanism for selectively removing unwanted cellular components, SEVs have received increased attention in recent years for their ability to mediate intercellular communication. Apart from proteins and lipids, SEVs contain RNAs, but how RNAs are selectively loaded into SEVs remains poorly understood. To address this question, we profiled SEV RNAs from mouse dendritic cells using RNA-Seq and identified a long noncoding RNA of retroviral origin, VL30, which is highly enriched (>200-fold) in SEVs compared to parental cells. Bioinformatic analysis revealed that exosome-enriched isoforms of VL30 RNA contain a repetitive 26-nucleotide motif. This repeated motif is itself efficiently incorporated into SEVs, suggesting the likelihood that it directly promotes SEV loading. RNA folding analyses indicate that the motif is likely to form a long double-stranded RNA hairpin and, consistent with this, its overexpression was associated with induction of a potent type I interferon response. Taken together, we propose that preferential loading into SEVs of the VL30 RNA containing this immunostimulatory motif enables cells to remove a potentially toxic RNA and avoid autoinflammation. In this way, the original notion of SEVs as a cellular garbage bin should not be entirely discounted.


2021 ◽  
Vol 15 ◽  
Author(s):  
Benjamin L. Zaepfel ◽  
Jeffrey D. Rothstein

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that affects upper and lower motor neurons. Familial ALS accounts for a small subset of cases (<10–15%) and is caused by dominant mutations in one of more than 10 known genes. Multiple genes have been causally or pathologically linked to both ALS and frontotemporal dementia (FTD). Many of these genes encode RNA-binding proteins, so the role of dysregulated RNA metabolism in neurodegeneration is being actively investigated. In addition to defects in RNA metabolism, recent studies provide emerging evidence into how RNA itself can contribute to the degeneration of both motor and cortical neurons. In this review, we discuss the roles of altered RNA metabolism and RNA-mediated toxicity in the context of TARDBP, FUS, and C9ORF72 mutations. Specifically, we focus on recent studies that describe toxic RNA as the potential initiator of disease, disease-associated defects in specific RNA metabolism pathways, as well as how RNA-based approaches can be used as potential therapies. Altogether, we highlight the importance of RNA-based investigations into the molecular progression of ALS, as well as the need for RNA-dependent structural studies of disease-linked RNA-binding proteins to identify clear therapeutic targets.


2021 ◽  
Author(s):  
Maya Braun ◽  
Shachar Shoshani ◽  
Joana Teixeira ◽  
Anna Mellul-Shtern ◽  
Maya Miller ◽  
...  

Nucleotide repeat expansions are a hallmark of over 40 neurodegenerative diseases. These repeats cause RNA toxicity and trigger multisystemic symptoms that worsen with age. RNA toxicity can trigger, through an unclear mechanism, severe disease manifestation in infants that inherited repeats from their mothers. Here we show in Caenorhabditis elegans how RNA interference machinery causes intergenerational toxicity through inheritance of siRNAs derived from CUG repeats. The maternal repeat-derived small RNAs cause transcriptomic changes in the offspring, reduce motility and shorten lifespan. However, the toxicity phenotypes in the offspring can be rescued by perturbing the RNAi machinery in affected mothers. This points to a novel mechanism linking maternal bias and the RNAi machinery and suggests that toxic RNA is transmitted to offspring and causes disease phenotypes through intergenerational epigenetic inheritance.


2021 ◽  
Author(s):  
Sonia Coni ◽  
Federica A. Falconio ◽  
Marta Marzullo ◽  
Marzia Munafò ◽  
Benedetta Zuliani ◽  
...  

ABSTRACTMicrosatellite expansions of CCTG repeats in the CNBP gene leads to accumulation of toxic RNA and have been associated to DM2. However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA binding protein that regulates translation and is required for mammalian development.Here we show that depletion of Drosophila CNBP in muscles causes age-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscle from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.GRAPHICAL ABSTRACTCNBP controls muscle function by regulating the polyamine metabolismLack of dCNBP impairs locomotor function through ODC-polyamine downregulationdCNBP binds dOdc mRNA and regulates its translationPolyamine supplementation or dOdc1 reconstitution rescues locomotor defectsCNBP-ODC-polyamine levels are reduced in muscle of DM2 patients


Sign in / Sign up

Export Citation Format

Share Document