stat3 signalling
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 100)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 25 (3) ◽  
Author(s):  
Yuyan Wang ◽  
Ni Zheng ◽  
Tingting Sun ◽  
Hui Zhao ◽  
Ying Chen ◽  
...  

2021 ◽  
Author(s):  
Etienne Masle-Farquhar ◽  
Timothy J Peters ◽  
Katherine JL Jackson ◽  
Mandeep Singh ◽  
Cindy S Ma ◽  
...  

Dysregulated STAT3 signalling is correlated with antibody-mediated autoimmunity and B- cell neoplasia, but its effect on B cells is underexplored. Here we address this in children with STAT3 gain-of-function (GOF) syndrome and in mice with STAT3T716M, the most common STAT3 GOF syndrome human mutation, or STAT3K658N, a dimerization interface mutation responsible for STAT3 GOF syndrome in two children. The main B cell consequence of overactive STAT3 was accumulation of CD19high CD21low atypical memory B cells in humans and of CD21low CD23low B cells in mice resembling age-associated B cells expressing T-bet, CD11c and plasma cell differentiation genes. Overactive STAT3 within B cells increased expression of many genes in the B cell receptor and T cell help pathways, increased the tolerogenic receptor CD22, but opposed B cell tolerance checkpoints and increased formation of T-bet+ B cells upon BCR and CD40 stimulation. These results reveal overactive STAT3 as a central driver of a key class of disease-associated B-lymphocytes in humans and mice.


Author(s):  
Sheryl Erica Fernandes ◽  
Deepak Kumar Saini

The cellular changes occurring due to senescence like proliferation arrest, increase in free radical levels, and secretion of pro-inflammatory cytokines have been well studied, but its associated alteration in intracellular signalling networks has been scarcely explored. In this study, we examine the roles of three major kinases viz. p38 MAPK, ERK, and STAT3 in regulating iNOS expression and thereby the levels of the free radical Nitric oxide in senescent cells. Our study revealed that these kinases could differentially regulate iNOS in senescent cells compared to non-senescent cells. Further, we tested the physiological relevance of these alterations with Salmonella infection assays and established an inter-regulatory network between these kinases unique to infected senescent cells. Overall, our findings show how key signalling networks may be rewired in senescent cells rendering them phenotypically different.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yijing Chu ◽  
Chengzhan Zhu ◽  
Chongyu Yue ◽  
Wei Peng ◽  
Weiping Chen ◽  
...  

Abstract Background Trophoblast dysfunction during pregnancy is fundamentally involved in preeclampsia. Several studies have revealed that human chorionic villous mesenchymal stem cells (CV-MSCs) could regulate trophoblasts function. Results To understand how human chorionic villous mesenchymal stem cells (CV-MSCs) regulate trophoblast function, we treated trophoblasts with CV-MSC supernatant under hypoxic conditions. Treatment markedly enhanced proliferation and invasion and augmented autophagy. Transcriptome and pathway analyses of trophoblasts before and after treatment revealed JAK2/STAT3 signalling as an upstream regulator. In addition, STAT3 mRNA and protein levels increased during CV-MSC treatment. Consistent with these findings, JAK2/STAT3 signalling inhibition reduced the autophagy, survival and invasion of trophoblasts, even in the presence of CV-MSCs, and blocking autophagy did not affect STAT3 activation in trophoblasts treated with CV-MSCs. Importantly, STAT3 overexpression increased autophagy levels in trophoblasts; thus, it positively regulated autophagy in hypoxic trophoblasts. Human placental explants also proved our findings by showing that STAT3 was activated and that LC3B-II levels were increased by CV-MSC treatment. Conclusion In summary, our data suggest that CV-MSC-dependent JAK2/STAT3 signalling activation is a prerequisite for autophagy upregulation in trophoblasts. Graphic abstract


2021 ◽  
pp. svn-2021-001028
Author(s):  
Zhiyuan Vera Zheng ◽  
Junfan Chen ◽  
Hao Lyu ◽  
Sin Yu Erica Lam ◽  
Gang Lu ◽  
...  

Background and purposeSignal transducer and activator of transcription 3 (STAT3) may contribute to the proinflammation in the central nervous system diseases by modulating the microglial responses. Thus, this study was intended to investigate the effect of STAT3 on microglia-dependent neuroinflammation and functional outcome after experimental subarachnoid haemorrhage (SAH).MethodsThe SAH model was established by endovascular perforation in the mouse. Real-time PCR (RtPCR) and western blot were used to examine the dynamic STAT3 signalling pathway responses after SAH. To clarify the role of the STAT3 signalling pathway in the microglia-dependent neuroinflammation after SAH, the microglia-specific STAT3 knockout (KO) mice were generated by the Cre-LoxP system. The neurological functions were assessed by Catwalk and Morris water maze tests. Neuronal loss after SAH was determined by immunohistochemistry staining. Microglial polarisation status after STAT3 KO was then examined by RtPCR and immunofluorescence.ResultsThe STAT3 and Janus kinase-signal transducer 2 activated immediately with the upregulation and phosphorylation after SAH. Downstream factors and related mediators altered dynamically and accordingly. Microglial STAT3 deletion ameliorated the neurological impairment and alleviated the early neuronal loss after SAH. To investigate the underlying mechanism, we examined the microglial reaction after STAT3 KO. STAT3 deletion reversed the increase of microglia after SAH. Loss of STAT3 triggered the early morphological changes of microglia and primed microglia from M1 to M2 polarisation. Functionally, microglial STAT3 deletion suppressed the SAH-induced proinflammation and promoted the anti-inflammation in the early phase.ConclusionsSTAT3 is closely related to the microglial polarisation transition and modulation of microglia-dependent neuroinflammation. Microglial STAT3 deletion improved neurological function and neuronal survival probably through promoting M2 polarisation and anti-inflammatory responses after SAH. STAT3 may serve as a promising therapeutic target to alleviate early brain injury after SAH.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kai Fang ◽  
Yueping Zhan ◽  
Ruiqiu Zhu ◽  
Yuqian Wang ◽  
Chengqi Wu ◽  
...  

Abstract Background Antiangiogenic therapy has increasingly become an important strategy for the treatment of colorectal cancer. Recent studies have shown that the tumour microenvironment (TME) promotes tumour angiogenesis. Bufalin is an active antitumour compound whose efficacy has been indicated by previous studies. However, there are very few studies on the antiangiogenic effects of bufalin. Methods Herein, human umbilical vein endothelial cell (HUVEC) tube formation, migration and adhesion tests were used to assess angiogenesis in vitro. Western blotting and quantitative PCR were used to detect relevant protein levels and mRNA expression levels. A subcutaneous xenograft tumour model and a hepatic metastasis model were established in mice to investigate the influence of bufalin on angiogenesis mediated by the TME in vivo. Results We found that angiogenesis mediated by cells in the TME was significantly inhibited in the presence of bufalin. The results demonstrated that the proangiogenic genes in HUVECs, such as VEGF, PDGFA, E-selectin and P-selectin, were downregulated by bufalin and that this downregulation was mediated by inhibition of the STAT3 pathway. Overexpression of STAT3 reversed the inhibitory effects of bufalin on angiogenesis. Furthermore, there was little reduction in angiogenesis when bufalin directly acted on the cells in the tumour microenvironment. Conclusion Our findings demonstrate that bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signalling pathway in vascular endothelial cells, revealing that bufalin may be used as a new antiangiogenic adjuvant therapy medicine to treat colorectal cancer.


Author(s):  
Linyan Xu ◽  
Yuanyuan Qin ◽  
Mengdi Liu ◽  
Jun Jiao ◽  
Dongyun Tu ◽  
...  

Background: Extranodal natural killer/T cell lymphoma (ENKTL) is an aggressive malignant non-Hodgkin's lymphoma (NHL) with a poor prognosis. Therefore, novel therapeutic biomarkers and agents must be identified for the same. KAT5 inhibitor, NU 9056, is a small molecule that can inhibit cellular proliferation; however, its role in ENKTL has not been studied. Objective: The present study investigated the effect of NU 9056 in ENKTL cells and explored the possible molecular mechanism for its antitumour effect. Methods: The role of NU 9056 in ENKTL cells was investigated through the Cell Counting Kit-8 assay, flow cytometry, Western blot, and real-time quantitative polymerase chain reaction assay. Results: NU 9056 inhibited ENKTL cell proliferation and induced G2/M phase arrest. NU 9056 also induced apoptosis by upregulating DR4, DR5, and caspase 8 expressions. Additionally, NU 9056 increased the expression of Bax, Bid, and cytochrome C and decreased the expression of Bcl-2, Mcl-1, and XIAP. Furthermore, NU 9056 activated endoplasmic reticulum (ER) stress and inhibited the JAK2/STAT3 signalling pathway. The p38 mitogen-activated protein kinase (MAPK) signalling pathway was also activated by NU 9056, and the ERK signalling pathway was suppressed in natural killer/T cell lymphoma cells. Conclusion: NU 9056 inhibited cell proliferation, arrested cell cycle in the G2/M phase, and induced apoptosis through the stimulation of ER stress, thus inhibiting the JAK2/STAT3 signalling pathway and regulating MAPK pathways in ENKTL cells.


Sign in / Sign up

Export Citation Format

Share Document