applied potential
Recently Published Documents


TOTAL DOCUMENTS

632
(FIVE YEARS 134)

H-INDEX

44
(FIVE YEARS 10)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Denis Johnson ◽  
Brock Hunter ◽  
Jevaun Christie ◽  
Cullan King ◽  
Eric Kelley ◽  
...  

AbstractWe address the low selectivity problem faced by the electrochemical nitrogen (N2) reduction reaction (NRR) to ammonia (NH3) by exploiting the Mars-van Krevelen (MvK) mechanism on two-dimensional (2D) Ti2N nitride MXene. NRR technology is a viable alternative to reducing the energy and greenhouse gas emission footprint from NH3 production. Most NRR catalysts operate by using an associative or dissociative mechanism, during which the NRR competes with the hydrogen evolution reaction (HER), resulting in low selectivity. The MvK mechanism reduces this competition by eliminating the adsorption and dissociation processes at the sites for NH3 synthesis. We show that the new class of 2D materials, nitride MXenes, evoke the MvK mechanism to achieve the highest Faradaic efficiency (FE) towards NH3 reported for any pristine transition metal-based catalyst—19.85% with a yield of 11.33 μg/cm2/hr at an applied potential of − 250 mV versus RHE. These results can be expanded to a broad class of systems evoking the MvK mechanism and constitute the foundation of NRR technology based on MXenes.


Author(s):  
Irina V. Kasyanova ◽  
Maxim V. Gorkunov ◽  
Serguei P. Palto

Abstract Liquid crystals subjected to modulated surface alignment assemble into metasurface-type structures capable of various flat-optical functionalities, including light diffraction and focusing, deflection and splitting. Remaining in a fluid phase, they are susceptible to external stimuli, and, in particular, can be efficiently controled by low voltages. We overview the existing approaches to the design and fabrication of liquid-crystal metasurfaces, highlight their realized optical functions and discuss the applied potential in emerging photonic devices.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 105
Author(s):  
Selma Rabai ◽  
Ahlem Teniou ◽  
Gaëlle Catanante ◽  
Messaoud Benounis ◽  
Jean-Louis Marty ◽  
...  

Cadmium (Cd2+) is one of the most toxic heavy metals causing serious health problems; thus, designing accurate analytical methods for monitoring such pollutants is highly urgent. Herein, we report a label-free electrochemical aptasensor for cadmium detection in water. For this, a nanocomposite combining the advantages of gold nanoparticles (AuNPs), carbon nanotubes (CNTs) and chitosan (Cs) was constructed and used as immobilization support for the cadmium aptamer. First, the surface of a glassy carbon electrode (GCE) was modified with CNTs-CS. Then, AuNPs were deposited on CNTs-CS/GCE using chrono-amperometry. Finally, the immobilization of the amino-modified Cd-aptamer was achieved via glutaraldehyde cross-linking. The different synthesis steps of the AuNPs/CNTs/CS nano assembly were characterized by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) was employed for cadmium determination. The proposed biosensor exhibited excellent performances for cadmium detection at a low applied potential (−0.5 V) with a high sensitivity (1.2 KΩ·M−1), a detection limit of 0.02 pM and a wide linear range (10−13–10−4 M). Moreover, the aptasensor showed a good selectivity against the interfering ions: Pb2+; Hg2+ and Zn2+. Our electrochemical biosensor provides a simple and sensitive approach for Cd2+ detection in aqueous solutions, with promising applications in the monitoring of trace amounts of heavy metals in real samples.


2021 ◽  
pp. 52039
Author(s):  
Rudolf Kiefer ◽  
Quoc Bao Le ◽  
Bharath Kumar Velmurugan ◽  
Toribio F. Otero

2021 ◽  
Author(s):  
Jonas Peters ◽  
Pablo Garrido-Barros ◽  
Joseph Derosa ◽  
Matthew Chalkley

Abstract New electrochemical ammonia (NH3) synthesis technologies are of interest as a complementary route to the Haber-Bosch (HB) process for distributed fertilizer generation, and towards exploiting ammonia as a zero-carbon fuel produced via renewably-sourced electricity.1–4 Apropos of these goals is a surge of fundamental research targeting heterogeneous materials5–7 as electrocatalysts for the nitrogen reduction reaction (N2RR). These systems generally suffer from poor stability and NH3 selectivity; competitive hydrogen evolution reaction (HER) outcompetes N2RR.8 Molecular catalyst systems can be exquisitely tuned and offer an alternative strategy,9 but progress has thus far been thwarted by the same selectivity issue; HER dominates. Herein we describe a tandem catalysis strategy that offers a solution to this puzzle. A molecular complex that can mediate an N2 reduction cycle is partnered with a co-catalyst that interfaces the electrode and an acid to mediate concerted proton-electron transfer (CPET) steps, facilitating N−H bond formation at a favorable applied potential and overall thermodynamic efficiency. Without CPET, certain intermediates of the N2RR cycle would be unreactive via independent electron transfer (ET) or proton transfer (PT) steps, thereby shunting the system. Promisingly, complexes featuring several metals (W, Mo, Os, Fe) achieve N2RR electrocatalysis at the same applied potential in the presence of the CPET mediator, pointing to the generality of this tandem approach.


Author(s):  
Stepan Tarasenko

In the course of this work the analysis of the proofs of the simple case of the Sperner Theorem was carried out, the approaches to the proof of the complicated case were proposed, the partial cases of multisets were considered, the theorem for these partial cases was proved, the generalized theorem was proved for some partial cases.   (the number of n - element multisets of k - element multiset), developed a small program to graphically show this fact, proved the bimonotonicity of this function. Also, in the course of this work, one of the possible applications of this theorem was considered, namely, the «Procedure for secret distribution», but the applied potential of the theorem does not end there.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6981
Author(s):  
Congming Xu ◽  
Haoran Gao ◽  
Wensheng Zhu ◽  
Wenyuan Wang ◽  
Can Sun ◽  
...  

The effect of SRB and applied potential on the stress corrosion sensitivity of X80 pipeline steel was analyzed in high-pH soil simulated solution under different conditions using a slow strain rate tensile test, electrochemical test, and electronic microanalysis. The experimental results showed that X80 pipeline steel has a certain degree of SCC sensitivity in high-pH simulated solution, and the crack growth mode was trans-granular stress corrosion cracking. In a sterile environment, the SCC mechanism of X80 steel was a mixture mechanism of anode dissolution and hydrogen embrittlement at −850 mV potential, while X80 steel had the lowest SCC sensitivity due to the weak effect of AD and HE; after Sulfate Reducing Bacteria (SRB) were inoculated, the SCC mechanism of X80 steel was an AD–membrane rupture mechanism at −850 mV potential. The synergistic effect of Cl− and SRB formed an oxygen concentration cell and an acidification microenvironment in the pitting corrosion pit, and this promoted the formation of pitting corrosion which induced crack nucleation, thus significantly improving the SCC sensitivity of X80 steel. The strong cathodic polarization promoted the local corrosion caused by SRB metabolism in the presence of bacteria, whereby the SCC sensitivity in the presence of bacteria was higher than that in sterile conditions under strong cathodic potential.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lei Chen ◽  
Mingpeng Wang ◽  
Zhaojie Zhang ◽  
Yujie Feng

Abstract Background Low-cost raw materials such as lignocellulosic materials have been utilized in second-generation ethanol production process. However, the sequential and slow conversion of xylose into target products remains one of the main challenges for realizing efficient industrial lignocellulosic biorefinery. Results By applying different constant potentials to different microbial electrolysis cells with xylose as the sole carbon source, we analyzed the output of metabolites, microbial community structures, electron flow, and carbon flow in the process of xylose electro-fermentation by domesticated activated sludge. The bioreactors produced currents when applying positive potentials. The peak currents of the + 0.242 V, + 0.542 V and + 0.842 V reactors were 0.96 × 10–6 A, 3.36 × 10–6 A and 6.43 × 10–6 A, respectively. The application of potentials promoted the xylose consumption, and the maximum consumption rate in the + 0.542 V reactor was 95.5%, which was 34.8 times that of the reactor without applied potential. The potential application also promoted the production of ethanol and acetate. The maximum ethanol yield (0.652 mol mol−1 xylose) was obtained in the + 0.842 V reactor. The maximum acetate concentration (1,874 µmol L−1) was observed in the + 0.842 V reactor. The optimal potential for ethanol production was + 0.842 V with the maximum ethanol yield and energy saving. The application of positive potential caused the microorganisms to carry out ethanol fermentation, and the application of negative potential forced the microorganisms to carry out acetic fermentation. The potential application changed the diversity and community structure of microorganisms in the reactors, and the two most significantly changed families were Paenibacillaceae and Bacillaceae. Conclusion The constructed microbial electrolysis cells with different potentials obtained better production yield and selectivity compared with the reactor without applied potential. Our work provides strategies for the subsequent fermentation processes with different needs.


2021 ◽  
Author(s):  
Pablo Garrido-Barros ◽  
Joseph Derosa ◽  
Matthew Chalkley ◽  
Jonas Peters

New electrochemical ammonia (NH3) synthesis technologies are of interest as a complementary route to the Haber-Bosch (HB) process for distributed fertilizer generation, and towards exploiting ammonia as a zero-carbon fuel produced via renewably-sourced electricity. Apropos of these goals is a surge of fundamental research targeting heterogeneous materials as electrocatalysts for the nitrogen reduction reaction (N2RR). These systems generally suffer from poor stability and NH3 selectivity; competitive hydrogen evolution reaction (HER) outcompetes N2RR. Molecular catalyst systems can be exquisitely tuned and offer an alternative strategy, but progress has thus far been thwarted by the same selectivity issue; HER dominates. Herein we describe a tandem catalysis strategy that offers a solution to this puzzle. A molecular complex that can mediate an N2 reduction cycle is partnered with a co-catalyst that interfaces the electrode and an acid to mediate concerted proton-electron transfer (CPET) steps, facilitating N−H bond formation at a favorable applied potential and overall thermodynamic efficiency. Without CPET, certain intermediates of the N2RR cycle would be unreactive via independent electron transfer (ET) or proton transfer (PT) steps, thereby shunting the system. Promisingly, complexes featuring several metals (W, Mo, Os, Fe) achieve N2RR electrocatalysis at the same applied potential in the presence of the CPET mediator, pointing to the generality of this tandem approach.


Sign in / Sign up

Export Citation Format

Share Document