carbohydrate structure
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 10)

H-INDEX

39
(FIVE YEARS 2)

Open Biology ◽  
2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Maria Giulia Bigotti ◽  
Andrea Brancaccio

The dystroglycan (DG) complex plays a pivotal role for the stabilization of muscles in Metazoa. It is formed by two subunits, extracellular α-DG and transmembrane β-DG, originating from a unique precursor via a complex post-translational maturation process. The α-DG subunit is extensively glycosylated in sequential steps by several specific enzymes and employs such glycan scaffold to tightly bind basement membrane molecules. Mutations of several of these enzymes cause an alteration of the carbohydrate structure of α-DG, resulting in severe neuromuscular disorders collectively named dystroglycanopathies. Given the fundamental role played by DG in muscle stability, it is biochemically and clinically relevant to investigate these post-translational modifying enzymes from an evolutionary perspective. A first phylogenetic history of the thirteen enzymes involved in the fabrication of the so-called ‘M3 core’ laminin-binding epitope has been traced by an overall sequence comparison approach, and interesting details on the primordial enzyme set have emerged, as well as substantial conservation in Metazoa. The optimization along with the evolution of a well-conserved enzymatic set responsible for the glycosylation of α-DG indicate the importance of the glycosylation shell in modulating the connection between sarcolemma and surrounding basement membranes to increase skeletal muscle stability, and eventually support movement and locomotion.


2021 ◽  
Author(s):  
Soraya Sajadimajd ◽  
Bahareh Mohammadi ◽  
Gholamreza Bahrami ◽  
Seyed Hamid Madani ◽  
Razieh Hatami ◽  
...  

Abstract Given the impact of notch signaling in the modulation of metabolic diseases and normal tissue homeostasis, this study aimed to evaluate whether notch signaling has a role in anti-diabetic and islet regenerative effects of isolated polysaccharide from Memordica charantia in diabetic rats. The polysaccharide was isolated from Memordica charantia (MCP) and characterized using FTIR and LC-MS/MS. Diabetic model was established by intrapritoneal administration of STZ in male Wistar rats. The levels of Hes1, Notch 1, DLL4, Jagged1, Pdx1, CD34, CD31 and VEGF were analyzed by using immunohistochemistry and real-time PCR. Structural analyses have revealed the carbohydrate structure of fraction. Blood glucose was halted by treatment with fraction. MCP scaled up the mRNA levels of Ins1, jagged1, Pdx1 and Hes1 while scaled down the levels of Notch1, Dll4 and the ratio of Bax/Bcl2 in diabetic rats. Furthermore, the immunohistochemistry staining of hes1, cyclin d1 and VEGF proteins was increased in the pancreas of MCP-treated diabetic rats compared to the diabetic group. These findings provide insights into the anti-diabetic potential of MCP through modulation of islets regeneration and suggest that modulation of notch and angiogenesis pathways may play the pivotal role in the restoration of islets to relieve diabetes.


2021 ◽  
Author(s):  
Arianna D. Romero Marcia ◽  
Tianming Yao ◽  
Ming-Hsu Chen ◽  
Renee E. Oles ◽  
Stephen R. Lindemann

AbstractIncreased dietary fiber consumption has been shown to increase human gut microbial diversity, but the mechanisms driving this effect remain unclear. One possible explanation is that microbes are able to divide metabolic labor in consumption of complex carbohydrates, which are composed of diverse glycosidic linkages that require specific cognate enzymes for degradation. However, as naturally derived fibers vary in both sugar composition and linkage structure, it is challenging to separate out the impact of each of these variables. We hypothesized that fine differences in carbohydrate linkage structure would govern microbial community structure and function independently of variation in glycosyl residue composition. To test this hypothesis, we fermented commercially available soluble resistant glucans, which are uniformly composed of glucose linked in different structural arrangements, in vitro with fecal inocula from each of three individuals. We measured metabolic outputs (pH, gas, and short-chain fatty acid production) and community structure via 16S rRNA amplicon sequencing. We determined that community metabolic outputs from identical glucans were highly individual, emerging from divergent initial microbiome structures. However, specific operational taxonomic units responded similarly in growth responses across individuals’ microbiota, though in context-dependent ways; these data suggested that certain taxa were more efficient in competing for some structures than others. Together, these data support the hypothesis that variation in linkage structure, independent of sugar composition, governs compositional and functional responses of microbiota.ImportancePrevious studies have reported how physical and chemical structures of carbohydrates influence the gut microbiota, however, variability across dietary fibers in monosaccharide composition and linkage structure obscures the relationship between fine polysaccharide linkage structure and microbial fitness. Revealing connections between subtle differences in glucan structure and microbial composition and metabolic responses, this study suggests much greater attention to substrate structure in the design of experiments to test fiber-microbiome responses in vitro and in vivo. Further, it underscores that, although microbiome responses to distinct fibers are individual and vary among specific glucans, similar carbohydrate structure-microbe relationships occur across individual donor communities. Together, these data may help explain why some individuals may respond (while others do not) to fiber treatments in human feeding trials and support the long-term goal of rational inclusion of specific fibers in dietary patterns to modulate the gut microbiome in support of health.


2021 ◽  
Vol 17 (2) ◽  
pp. e1009291
Author(s):  
Yuli Talyansky ◽  
Travis B. Nielsen ◽  
Jun Yan ◽  
Ulrike Carlino-Macdonald ◽  
Gisela Di Venanzio ◽  
...  

Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen for which novel therapeutic approaches are needed. Unfortunately, the drivers of virulence in A. baumannii remain uncertain. By comparing genomes among a panel of A. baumannii strains we identified a specific gene variation in the capsule locus that correlated with altered virulence. While less virulent strains possessed the intact gene gtr6, a hypervirulent clinical isolate contained a spontaneous transposon insertion in the same gene, resulting in the loss of a branchpoint in capsular carbohydrate structure. By constructing isogenic gtr6 mutants, we confirmed that gtr6-disrupted strains were protected from phagocytosis in vitro and displayed higher bacterial burden and lethality in vivo. Gtr6+ strains were phagocytized more readily and caused lower bacterial burden and no clinical illness in vivo. We found that the CR3 receptor mediated phagocytosis of gtr6+, but not gtr6-, strains in a complement-dependent manner. Furthermore, hypovirulent gtr6+ strains demonstrated increased virulence in vivo when CR3 function was abrogated. In summary, loss-of-function in a single capsule assembly gene dramatically altered virulence by inhibiting complement deposition and recognition by phagocytes across multiple A. baumannii strains. Thus, capsular structure can determine virulence among A. baumannii strains by altering bacterial interactions with host complement-mediated opsonophagocytosis.


2020 ◽  
Vol 9 ◽  
pp. 83-93
Author(s):  
A.K. Natyrov ◽  
◽  
A.B. Slozhenkin ◽  
O.A. Knyazhechenko ◽  
◽  
...  

2020 ◽  
Vol 97 ◽  
pp. 233-248 ◽  
Author(s):  
L. Payling ◽  
K. Fraser ◽  
S.M. Loveday ◽  
I. Sims ◽  
N. Roy ◽  
...  

2020 ◽  
Author(s):  
Tianming Yao ◽  
Ming-Hsu Chen ◽  
Stephen R. Lindemann

ABSTRACTDietary fibers are major substrates for the colonic microbiota, but the structural specificity of these fibers for the diversity, structure, and function of gut microbial communities are poorly understood. Here, we employed an in vitro sequential batch fecal culture approach to determine: 1) whether the chemical complexity of a carbohydrate structure influences its ability to maintain microbial diversity in the face of high dilution pressure and 2) whether substrate structuring or obligate microbe-microbe metabolic interactions (e.g. exchange of amino acids or vitamins) exert more influence on maintained diversity. Sorghum arabinoxylan (SAX, complex polysaccharide), inulin (low-complexity oligosaccharide) and their corresponding monosaccharide controls were selected as model carbohydrates. Our results demonstrate that complex carbohydrates stably sustain diverse microbial consortia. Further, very similar final consortia were enriched on SAX from the same individual’s fecal microbiota across a one-month interval, suggesting that polysaccharide structure is more influential than stochastic alterations in microbiome composition in governing the outcomes of sequential batch cultivation experiments. SAX-consuming consortia were anchored by Bacteroides ovatus and retained diverse consortia of >12 OTUs; whereas final inulin-consuming consortia were dominated either by Klebsiella pneumoniae or Bifidobacterium sp. and Escherichia coli. Furthermore, auxotrophic interactions were less influential in structuring microbial consortia consuming SAX than the less-complex inulin. These data suggest that carbohydrate structural complexity affords independent niches that structure fermenting microbial consortia, whereas other metabolic interactions govern the composition of communities fermenting simpler carbohydrates.IMPORTANCEThe mechanisms by which gut microorganisms compete for and cooperate on human-indigestible carbohydrates of varying structural complexity remain unclear. Gaps in this understanding make it challenging to predict the effect of a particular dietary fiber’s structure on the diversity, composition, or function of gut microbiomes, especially with inter-individual variability in diets and microbiomes. Here, we demonstrate that carbohydrate structure governs the diversity of gut microbiota under high dilution pressure, suggesting that such structures may support microbial diversity in vivo. Further, we also demonstrate that carbohydrate polymers are not equivalent in the strength by which they influence community structure and function, and that metabolic interactions among members arising due to auxotrophy exert significant influence on the outcomes of these competitions for simpler polymers. Collectively, these data suggest that large, complex dietary fiber polysaccharides structure the human gut ecosystem in ways that smaller and simpler ones may not.


Sign in / Sign up

Export Citation Format

Share Document