vapor density
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Siming Zheng ◽  
Juan Huo ◽  
Wenbing Cai ◽  
Yinhui Zhang ◽  
Peng Li ◽  
...  

Abstract. The amount of water vapor in the atmosphere is very small, but its content varies greatly in different humidity areas. The change of water vapor will affect the transmission of microwave link signals, and most of the water vapor is concentrated in the lower layer, so the water vapor density can be measured by the change of the near-ground microwave link transmission signal. This study collected one-year data of the E-band millimeter-wave link in Hebei, China, and used a model based on the ITU-R to estimate the water vapor density. An improved method of extracting the water vapor induced attenuation value is also introduced. It has a higher time resolution and the estimation error is lower than the previous method. In addition, this paper conducts the seasonal analysis of water vapor inversion for the first time. The monthly and seasonal evaluation index results show a high correlation between the retrieved water vapor density the actual water vapor density value measured by the local weather station. The correlation value for the whole year is up to 0.95, the root mean square error is as low as 0.35, and the average relative error is as low as 0.05. This research shows that millimeter-wave backhaul link provides high-precision data for the measurement of water vapor density and has a positive effect on future weather forecast research.


2021 ◽  
Vol 13 (12) ◽  
pp. 2422
Author(s):  
Heng Hu ◽  
Min Liu ◽  
Jiqin Zhong ◽  
Xin Deng ◽  
Yunchang Cao ◽  
...  

A fast voxel traversal algorithm for ray tracing was applied to build a 4 × 4 × 20 tomography model using the observation data of 11 ground-based Global Navigation Satellite System (GNSS) meteorology (GNSS/MET) stations in Hebei Province, China. The precipitation water vapor (PWV) observed at 05 a.m. (Universal Time Coordinated: UTC) on 10 December 2019, was used to reconstruct three-dimensional (3D) water vapor density fields over the test area. The tomographic results (GNSS_T) show that the water vapor density above this area is mainly below 25 g/m3 and is concentrated between the first to the fourth layers. The vertical distribution conforms to the exponential characteristics, while the horizontal distribution shows a decreasing trend from southwest to northeast. In addition, the results of the 0.25° grid dataset generated by the Global Forecast System (GFS) of the National Center for Environmental Forecasting (NCEP) (GFS_L) were interpolated to the height of the tomographic grid, which is in good agreement with the tomographic results. GFS_L is larger than GNSS_T on the first floor at the surface, with an average deviation of 0.19 g/m3. In contrast, GFS_L from the second floor to the top of the model is smaller than GNSS_T, with the average deviations distributed between −0.08 and −0.15 g/m3.


2021 ◽  
Author(s):  
WEI SONG ◽  
Qiusheng Liu ◽  
LiXian Zhang ◽  
Binbin Han ◽  
Lu Zhang

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 648
Author(s):  
Qing Li ◽  
Ming Wei ◽  
Zhenhui Wang ◽  
Sulin Jiang ◽  
Yanli Chu

Atmospheric temperature and humidity retrievals from ground-based microwave remote sensing are useful in a variety of meteorological and environmental applications. Though the influence of clouds is usually considered in current retrieval algorithms, the resulting temperature and humidity estimates are still biased high in overcast conditions compared to radiosonde observations. Therefore, there is a need to improve the quality of retrievals in cloudy conditions. This paper presents an approach to make brightness temperature (TB) correction for cloud influence before the data can be used in the inversion of vertical profiles of atmospheric temperature and humidity. A three-channel method is proposed to make cloud parameter estimation, i.e., of the total 22 channels of the ground-based radiometer, three are adopted to set up a relationship between cloud parameters and brightness temperatures, so that the observations from the three channels can be used to estimate cloud thickness and water content and complete the cloud correction for the rest of the channels used in the retrieval. Based on two years of data from the atmosphere in Beijing, a comparison of the retrievals with radiosonde observations (RAOB) shows: (1) the temperature retrievals from this study have a higher correlation with RAOB and are notably better than in the vendor-provided LV2. The bias of the temperature retrievals from this study is close to zero at all heights, and the RMSE is greatly reduced from >5 °C to <2 °C in the layer, from about 1.5 km up to 5 km. The temperature retrievals from this study have higher correlation with RAOB data compared to the vendor-provided LV2, especially at and above a 2 km height. (2) The bias of the water vapor density profile from this study is near to zero, while the LV2 has a positive bias as large as 4 g/m3. The RMSE of the water vapor density profile from this study is <2 g/m3, while the RMSE for LV2 is as large as 10 g/m3. That is, both the bias and RMSE from this study are evidently less than the LV2, with a greater improvement in the lower troposphere below 5 km. Correlation with RAOB is improved even more for the water vapor density. The correlation of the retrievals from this study increases to one within the boundary layer, but the correlation of LV2 with RAOB is only 0.8 at 0.5 km height, 0.7 at 1 km, and even less than 0.5 at 2 km. (3) A parameter named the Cloud Impact index, determined by cloud water concentration and cloud thickness, together with the cloud base height, has been defined to show that both BIAS and RMSE of “high-CI subsample” are larger than those of the “low-CI subsample”, indicating that high-CI cloud has a higher impact on the retrievals and the correction for cloud influence is more necessary.


Author(s):  
Shaogui Ai ◽  
Yiping Fan ◽  
Yuecheng Li ◽  
Yujie Gong ◽  
Pei Ding ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1409
Author(s):  
Kun Song ◽  
Xichuan Liu ◽  
Taichang Gao ◽  
Peng Zhang

Water vapor is a key element in both the greenhouse effect and the water cycle. However, water vapor has not been well studied due to the limitations of conventional monitoring instruments. Recently, estimating rain rate by the rain-induced attenuation of commercial microwave links (MLs) has been proven to be a feasible method. Similar to rainfall, water vapor also attenuates the energy of MLs. Thus, MLs also have the potential of estimating water vapor. This study proposes a method to estimate water vapor density by using the received signal level (RSL) of MLs at 15, 18, and 23 GHz, which is the first attempt to estimate water vapor by MLs below 20 GHz. This method trains a sensing model with prior RSL data and water vapor density by the support vector machine, and the model can directly estimate the water vapor density from the RSLs without preprocessing. The results show that the measurement resolution of the proposed method is less than 1 g/m3. The correlation coefficients between automatic weather stations and MLs range from 0.72 to 0.81, and the root mean square errors range from 1.57 to 2.31 g/m3. With the large availability of signal measurements from communications operators, this method has the potential of providing refined data on water vapor density, which can contribute to research on the atmospheric boundary layer and numerical weather forecasting.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 435
Author(s):  
Qing Li ◽  
Ming Wei ◽  
Zhenhui Wang ◽  
Yanli Chu

To assess the quality of the retrieved products from ground-based microwave radiometers, the “clear-sky” Level-2 data (LV2) products (profiles of atmospheric temperature and humidity) filtered through a radiometer in Beijing during the 24 months from January 2010 to December 2011 were compared with radiosonde data. Evident differences were revealed. Therefore, this paper investigated an approach to calibrate the observed brightness temperatures by using the model-simulated brightness temperatures as a reference under clear-sky conditions. The simulation was completed with a radiative transfer model and National Centers for Environmental Prediction final analysis (NCEP FNL) data that are independent of the radiometer system. Then, the least-squares method was used to invert the calibrated brightness temperatures to the atmospheric temperature and humidity profiles. A comparison between the retrievals and radiosonde data showed that the calibration of the brightness temperature observations is necessary, and can improve the inversion of temperature and humidity profiles compared with the original LV2 products. Specifically, the consistency with radiosonde was clearly improved: the correlation coefficients are increased, especially, the correlation coefficient for water vapor density increased from 0.2 to 0.9 around the 3 km height; the bias decreased to nearly zero at each height; the RMSE (root of mean squared error) for temperature profile was decreased by more than 1 degree at most heights; the RMSE for water vapor density was decreased from greater than 4 g/m3 to less than 1.5 g/m3 at 1 km height; and the decrease at all other heights were also noticeable. In this paper, the evolution of a temperature inversion process is given as an example, using the high-temporal-resolution brightness temperature after quality control to obtain a temperature and humidity profile every two minutes. Therefore, the characteristics of temperature inversion that cannot be seen by conventional radiosonde data (twice daily) were obtained by radiometer. This greatly compensates for the limited temporal coverage of radiosonde data. The approach presented by this paper is a valuable reference for the reprocessing of the historical observations, which have been accumulated for years by less-calibrated radiometers.


2021 ◽  
Vol 14 (2) ◽  
pp. 1253-1266
Author(s):  
Seth Kutikoff ◽  
Xiaomao Lin ◽  
Steven R. Evett ◽  
Prasanna Gowda ◽  
David Brauer ◽  
...  

Abstract. Fast-response infrared gas analyzers (IRGAs) have been widely used over 3 decades in many ecosystems for long-term monitoring of water vapor fluxes in the surface layer of the atmosphere. While some of the early IRGA sensors are still used in these national and/or regional eco-flux networks, optically improved IRGA sensors are newly employed in the same networks. The purpose of this study was to evaluate the performance of water vapor density and flux data from three generations of IRGAs – LI-7500, LI-7500A, and LI-7500RS (LI-COR Bioscience, Inc., Nebraska, USA) – over the course of a growing season in Bushland, Texas, USA, in an irrigated maize canopy for 90 d. Water vapor density measurements were in generally good agreement, but temporal drift occurred in different directions and magnitudes. Means exhibited mostly shift changes that did not impact the flux magnitudes, while their variances of water vapor density fluctuations were occasionally in poor agreement, especially following rainfall events. LI-7500 cospectra were largest compared to LI-7500RS and LI-7500A, especially under unstable and neutral static stability. Agreement among the sensors was best under the typical irrigation-cooled boundary layer, with a 14 % interinstrument coefficient of variability under advective conditions. Generally, the smallest variances occurred with the LI-7500RS, and high-frequency spectral corrections were larger for these measurements, resulting in similar fluxes between the LI-7500A and LI-7500RS. Fluxes from the LI-7500 were best representative of growing season ET based on a world-class lysimeter reference measurement, but using the energy balance ratio as an estimate of systematic bias corrected most of the differences among measured fluxes.


Sign in / Sign up

Export Citation Format

Share Document