squid magnetometry
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 22)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Katarzyna Gas ◽  
Maciej Sawicki

Steadily growing interest in magnetic characterization of organic compounds for therapeutic purposes or of other irregularly shaped specimens calls for refinements of experimental methodology to satisfy experimental challenges. Encapsulation in capsules remains the method of choice, but its applicability in precise magnetometry is limited. This is particularly true for minute specimens in the single milligram range as they are outweighed by the capsules and are subject to large alignment errors. We present here a completely new experimental methodology that permits 30-fold in situ reduction of the signal of capsules by substantially restoring the symmetry of the sample holder that is otherwise broken by the presence of the capsule. In practical terms it means that the standard 30 mg capsule is seen by the magnetometer as approximately a 1 mg object, effectively opening the window for precise magnetometry of single milligram specimens. The method is shown to work down to 1.8 K and in the whole range of the magnetic fields. The method is demonstrated and validated using the reciprocal space option of MPMS-SQUID magnetometers; however, it can be easily incorporated in any magnetometer that can accommodate straw sample holders (i.e., the VSM-SQUID). Importantly, the improved sensitivity is accomplished relying only on the standard accessories and data reduction method provided by the SQUID manufacturer, eliminating the need for elaborate raw data manipulations.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 495
Author(s):  
Katarzyna Gas ◽  
Maciej Sawicki

Steadily growing interest in magnetic characterization of organic compounds for therapeutic purposes or of other irregularly shaped specimens calls for refinements of experimental methodology to satisfy experimental challenges. Encapsulation in capsules remains the method of choice, but its applicability in precise magnetometry is limited. This is particularly true for minute specimens in the single milligram range as they are outweighed by the capsules and are subject to large alignment errors. We present here a completely new experimental methodology that permits 30-fold in situ reduction of the signal of capsules by substantially restoring the symmetry of the sample holder that is otherwise broken by the presence of the capsule. In practical terms it means that the standard 30 mg capsule is seen by the magnetometer as approximately a 1 mg object, effectively opening the window for precise magnetometry of single milligram specimens. The method is shown to work down to 1.8 K and in the whole range of the magnetic fields. The method is demonstrated and validated using the reciprocal space option of MPMS-SQUID magnetometers; however, it can be easily incorporated in any magnetometer that can accommodate straw sample holders (i.e., the VSM-SQUID). Importantly, the improved sensitivity is accomplished relying only on the standard accessories and data reduction method provided by the SQUID manufacturer, eliminating the need for elaborate raw data manipulations.


2021 ◽  
Author(s):  
Katarzyna Gas ◽  
Maciej Sawicki

Steadily growing interest in magnetic characterization of organic compounds aiming at therapeutic purposes, or of other irregular-shaped specimens calls for refinements of experimental methodology to satisfy experimental challenges. Encapsulation in capsules remains the method of choice, but its applicability in precise magnetometry is limited. This is particularly true for minute specimens in single mg range since they are outweighed by the capsules and due to large alignment errors. We present here a complete new experimental methodology which permits 30-fold in situ reduction of the signal of capsules. In practical terms it means that the standard 30 mg capsule is seen by the magnetometer as about 1 mg object, effectively opening the window for precise magnetometry of single mg specimens. The method is shown to work down to 1.8 K and in the whole range of the magnetic fields. The method is demonstrated and validated using the reciprocal space option of MPMS-SQUID magnetometers, however it can be easily incorporated in any magnetometer which can accommodate straw sample holders (i.e. the VSM-SQUID). Importantly, the improved sensitivity is accomplished relying only on the standard accessories and data reduction method provided by the SQUID manufacturer, eliminating needs for an elaborate raw data manipulations.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Laura Martel ◽  
Thibault Charpentier ◽  
Pedro Amador Cedran ◽  
Chris Selfslag ◽  
Mohamed Naji ◽  
...  

In this study we reported the synthesis of three polycrystalline uranium borides UB1.78±0.02, UB3.61±0.041, and UB11.19±0.13 and their analyses using chemical analysis, X-ray diffraction, SQUID magnetometry, solid-state NMR, and Fourier transformed infrared spectroscopy. We discuss the effects of stoichiometry deviations on the lattice parameters and magnetic properties. We also provide their static and MAS-NMR spectra showing the effects of the 5f-electrons on the 11B shifts. Finally, the FTIR measurements showed the presence of a local disorder.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5445
Author(s):  
Matvey Gruzdev ◽  
Ulyana Chervonova ◽  
Arkadiy Kolker ◽  
Nadezhda Fomina ◽  
Ekaterina Zueva ◽  
...  

This paper focuses on the synthesis, structural characterization, and study of the optical, magnetic, and thermal properties of novel architectures combining metal ions as magnetoactive centers and photoactive blocks formed by carbazole units. For this purpose, a series of azomethine complexes of the composition [Fe(L)2]X (L = 3,6-bis[(3′,6′-di-tert-butyl-9-carbazol)-9-carbazol]benzoyloxy-4-salicylidene-N′-ethyl-N-ethylenediamine, X = NO3−, Cl−, PF6−) were synthesized by the reaction of metal salts with Schiff bases in a mixture of solvents. The UV–Vis absorption properties were studied in dichloromethane and rationalized via time-dependent density functional theory (DFT) calculations. Upon excitation at 350 nm, the compounds exhibited an intense dual fluorescence with two emission bands centered at ~445 and ~485 nm, which were assigned to πcarb–π* intraligand and πcarb–dFe ligand-to-metal charge-transfer excited states. EPR spectroscopy and SQUID magnetometry revealed solid-state partial spin crossover in some compounds, and antiferromagnetic interactions between the neighboring Fe(III) ions.


2021 ◽  
Vol 868 ◽  
pp. 159119
Author(s):  
Katarzyna Gas ◽  
Gerd Kunert ◽  
Piotr Dluzewski ◽  
Rafal Jakiela ◽  
Detlef Hommel ◽  
...  

2021 ◽  
Author(s):  
Christian Dirk Buch ◽  
Steen Hansen ◽  
Dmitri Mitcov ◽  
Camilla Mia Tram ◽  
Gary Nichol ◽  
...  

Heterolanthanide complexes are difficult to synthesize owing to the similar chemistry of the lanthanide ions. Conse-quently, very few purely heterolanthanide complexes have been synthesized. This is despite the fact that such complexes hold inter-esting optical and magnetic properties. To fine-tune these properties, it is important that one can choose complexes with any given combination of lanthanides. Herein we report a synthetic procedure which yields pure heterodinuclear lanthanide cryptates LnLn*LX3 (X = NO3- or OTf-) based on the cryptand H3L = N[(CH2)2N=CH-R-CH=N-(CH2)2]3N (R = m-C6H2OH-2-Me-5). In the synthesis the choice of counter ion and solvent prove crucial in controlling the Ln-Ln*composition. Choosing the optimal solvent and counter ion affords pure heterodinuclear complexes with any given combination of Gd(III)-Lu(III) including Y(III). To demon-strate the versatility of the synthesis all dinuclear combinations of Y(III), Gd(III), Yb(III) and Lu(III) were synthesized resulting in 10 novel complexes of the form LnLn*L(OTf)3 with LnLn* = YbGd 1, YbY 2, YbLu 3, YbYb 4, LuGd 5, LuY 6, LuLu 7, YGd 8, YY 9 and GdGd 10. Through the use of 1H, 13C NMR and mass spectrometry the heterodinuclear nature of YbGd, YbY, YbLu, LuGd, LuY and YGd was confirmed. Crystal structures of LnLn*L(NO3)3 reveal short Ln-Ln distances of ~3.5 Å. Using SQUID magnetometry the exchange coupling between the lanthanide ions was found to be anti-ferromagnetic for GdGd and YbYb while ferromagnetic for YbGd.


2021 ◽  
Author(s):  
Christian Dirk Buch ◽  
Steen Hansen ◽  
Dmitri Mitcov ◽  
Camilla Mia Tram ◽  
Gary Nichol ◽  
...  

Heterolanthanide complexes are difficult to synthesize owing to the similar chemistry of the lanthanide ions. Conse-quently, very few purely heterolanthanide complexes have been synthesized. This is despite the fact that such complexes hold inter-esting optical and magnetic properties. To fine-tune these properties, it is important that one can choose complexes with any given combination of lanthanides. Herein we report a synthetic procedure which yields pure heterodinuclear lanthanide cryptates LnLn*LX3 (X = NO3- or OTf-) based on the cryptand H3L = N[(CH2)2N=CH-R-CH=N-(CH2)2]3N (R = m-C6H2OH-2-Me-5). In the synthesis the choice of counter ion and solvent prove crucial in controlling the Ln-Ln*composition. Choosing the optimal solvent and counter ion affords pure heterodinuclear complexes with any given combination of Gd(III)-Lu(III) including Y(III). To demon-strate the versatility of the synthesis all dinuclear combinations of Y(III), Gd(III), Yb(III) and Lu(III) were synthesized resulting in 10 novel complexes of the form LnLn*L(OTf)3 with LnLn* = YbGd 1, YbY 2, YbLu 3, YbYb 4, LuGd 5, LuY 6, LuLu 7, YGd 8, YY 9 and GdGd 10. Through the use of 1H, 13C NMR and mass spectrometry the heterodinuclear nature of YbGd, YbY, YbLu, LuGd, LuY and YGd was confirmed. Crystal structures of LnLn*L(NO3)3 reveal short Ln-Ln distances of ~3.5 Å. Using SQUID magnetometry the exchange coupling between the lanthanide ions was found to be anti-ferromagnetic for GdGd and YbYb while ferromagnetic for YbGd.


2021 ◽  
pp. 39-62
Author(s):  
Randy K. Dumas ◽  
Tom Hogan

Sign in / Sign up

Export Citation Format

Share Document