animal physiology
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 90)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Berra Erkosar ◽  
Cindy Dupuis ◽  
Fanny Cavigliasso ◽  
Loriane Savary ◽  
Hector Gallart-Ayala ◽  
...  

Juveniles are often first to suffer from nutrient shortage, and juvenile undernutrition is likely an important force of natural selection shaping animal physiology, with consequences potentially extending into adulthood. We combined RNAseq, targeted metabolomics and genomics to study the consequences of experimental evolution under juvenile undernutrition for metabolism of reproductively active adult females of Drosophila melanogaster. Compared to six Control populations maintained on standard diet, six Selected populations evolved for over 230 generations on a nutrient-poor larval diet showed major changes in adult gene expression and metabolite abundance. In particular, Selected flies were relatively deficient in essential amino acids and purine nucleotides, but showed overabundance of several non-essential amino-acids involved in purine synthesis and overexpression of multiple enzymes catalyzing this pathway. Selected flies also accumulated medium-chain acylcarnitines suggestive of congestion in beta-oxidation, possibly linked to deficiency of electron transporters. Some aspects of the metabolic profile of Selected flies resembled that of flies subject to starvation. Furthermore, differences between Selected and Control populations in adult gene expression were in general positively correlated with differences in larval expression, consistent with pleiotropy in gene regulation between the life stages. Finally, Selected flies were less fit in terms of fecundity than Controls even when both were raised under the conditions under which the Selected populations evolved. These results suggest that evolutionary adaptation to juvenile undernutrition has large pleiotropic consequences for adult metabolism, and that they are costly rather than adaptive for adult fitness.


2021 ◽  
Vol 17 (12) ◽  
pp. e1008933
Author(s):  
Miguel Piñeiro ◽  
Wilson Mena ◽  
John Ewer ◽  
Patricio Orio

Neuromodulators, such as neuropeptides, can regulate and reconfigure neural circuits to alter their output, affecting in this way animal physiology and behavior. The interplay between the activity of neuronal circuits, their modulation by neuropeptides, and the resulting behavior, is still poorly understood. Here, we present a quantitative framework to study the relationships between the temporal pattern of activity of peptidergic neurons and of motoneurons during Drosophila ecdysis behavior, a highly stereotyped motor sequence that is critical for insect growth. We analyzed, in the time and frequency domains, simultaneous intracellular calcium recordings of peptidergic CCAP (crustacean cardioactive peptide) neurons and motoneurons obtained from isolated central nervous systems throughout fictive ecdysis behavior induced ex vivo by Ecdysis triggering hormone. We found that the activity of both neuronal populations is tightly coupled in a cross-frequency manner, suggesting that CCAP neurons modulate the frequency of motoneuron firing. To explore this idea further, we used a probabilistic logistic model to show that calcium dynamics in CCAP neurons can predict the oscillation of motoneurons, both in a simple model and in a conductance-base model capable of simulating many features of the observed neural dynamics. Finally, we developed an algorithm to quantify the motor behavior observed in videos of pupal ecdysis, and compared their features to the patterns of neuronal calcium activity recorded ex vivo. We found that the motor activity of the intact animal is more regular than the motoneuronal activity recorded from ex vivo preparations during fictive ecdysis behavior; the analysis of the patterns of movement also allowed us to identify a new post-ecdysis phase.


2021 ◽  
Vol 5 (2) ◽  
pp. 67-77
Author(s):  
Tanya Sharma ◽  
Rini Lukose ◽  
Jessica E. Shiers-Hanley ◽  
Sanja Hinic-Frlog ◽  
Simone Laughton

This case study highlights the work of Students as Partners (SaP) as a balanced approach for implementing and evaluating an online open-access textbook in introductory animal physiology at the University of Toronto Mississauga. Started in 2017 with an eCampus Ontario grant, the project involved undergraduate and graduate students developing and improving an open-access e-textbook to support student learning in a second-year undergraduate introductory animal physiology course. This case study focuses on the 2019–2020 academic term and the work of two undergraduate students working alongside faculty and two librarians. As part of their research, the partners consulted the literature and gathered feedback from students taking the course in which the open e-textbook was used. Student partners added updates and new interactive features to create a more engaging educational resource to support student learning. The partners also reflected on their role in the open educational resource development process.  


2021 ◽  
Vol 4 (11) ◽  
pp. e202000703
Author(s):  
Karen Arnaud ◽  
Vanessa Oliveira Moreira ◽  
Jean Vincent ◽  
Glenn Dallerac ◽  
Chantal Dubreuil ◽  
...  

Elevated amyloid precursor protein (APP) expression in the choroid plexus suggests an important role for extracellular APP metabolites such as sAPPα in cerebrospinal fluid. Despite widespread App brain expression, we hypothesized that specifically targeting choroid plexus expression could alter animal physiology. Through various genetic and viral approaches in the adult mouse, we show that choroid plexus APP levels significantly impact proliferation in both subventricular zone and hippocampus dentate gyrus neurogenic niches. Given the role of Aβ peptides in Alzheimer disease pathogenesis, we also tested whether favoring the production of Aβ in choroid plexus could negatively affect niche functions. After AAV5-mediated long-term expression of human mutated APP specifically in the choroid plexus of adult wild-type mice, we observe reduced niche proliferation, reduced hippocampus APP expression, behavioral defects in reversal learning, and deficits in hippocampal long-term potentiation. Our findings highlight the unique role played by the choroid plexus in regulating brain function and suggest that targeting APP in choroid plexus may provide a means to improve hippocampus function and alleviate disease-related burdens.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Mor Levi-Ferber ◽  
Rewayd Shalash ◽  
Adrien Le-Thomas ◽  
Yehuda Salzberg ◽  
Maor Shurgi ◽  
...  

Understanding the molecular events that regulate cell pluripotency versus acquisition of differentiated somatic cell fate is fundamentally important. Studies in Caenorhabditis elegans demonstrate that knockout of the germline-specific translation repressor gld-1 causes germ cells within tumorous gonads to form germline-derived teratoma. Previously we demonstrated that endoplasmic reticulum (ER) stress enhances this phenotype to suppress germline tumor progression(Levi-Ferber et al., 2015). Here, we identify a neuronal circuit that non-autonomously suppresses germline differentiation and show that it communicates with the gonad via the neurotransmitter serotonin to limit somatic differentiation of the tumorous germline. ER stress controls this circuit through regulated inositol requiring enzyme-1 (IRE-1)-dependent mRNA decay of transcripts encoding the neuropeptide FLP-6. Depletion of FLP-6 disrupts the circuit’s integrity and hence its ability to prevent somatic-fate acquisition by germline tumor cells. Our findings reveal mechanistically how ER stress enhances ectopic germline differentiation and demonstrate that regulated Ire1-dependent decay can affect animal physiology by controlling a specific neuronal circuit.


Author(s):  
Caitlin N Cadaret ◽  
Dustin T Yates

Abstract Studies show that retrieval practices such as homework assignments that are completed during the encoding phase of learning benefit knowledge acquisition and retention. In addition, desirable difficulties, which are strategies that intentionally create a greater challenge during initial learning to enhance encoding and retrieval pathways, also benefit learning long term. Our objective was to determine whether weekly homework questions intended to create desirable difficulties by requiring higher-order cognitive skills (HOCS) benefited students’ long-term retention of physiology concepts compared to questions designed to require lower-order cognitive skills (LOCS). Undergraduate students in a junior-level animal physiology course were presented information during weekly laboratory periods, and then required to complete retrieval practices in the form of online homework assignments 5 d after each lab. Homework questions were formatted per Bloom’s Taxonomy to require HOCS (i.e. level 4 or 5) or LOCS (i.e. level 1 or 2). Information retention was assessed the next week via performance on an in-class quiz and again at semesters’ end via performance on a final practical exam. We observed no differences in performance on the in-class quiz or final practical exam between students randomly assigned to complete homework with HOCS questions compared to LOCS questions. However, students that received homework with HOCS questions had decreased (P < 0.05) performance scores on 9 out of the 11 homework assignments compared to those receiving homework with LOCS questions. These findings indicate that desirable difficulties were not created by our HOCS homework questions because students receiving these more difficult retrieval practices did not achieve equal success on them. As a result, this attempt to create variations in cognitive demand did not enhance retention of knowledge in this study.


2021 ◽  
Author(s):  
Cherie S. Hesgrove ◽  
Kenny H. Nguyen ◽  
Sourav Biswas ◽  
Charles A. Childs ◽  
Shraddha KC ◽  
...  

Tardigrades, also known as water bears, make up a phylum of small but extremely robust animals renowned for their ability to survive extreme stresses including desiccation. How tardigrades survive desiccation is one of the enduring mysteries of animal physiology. Here we show that CAHS D, an intrinsically disordered protein belonging to a unique family of proteins possessed only by tardigrades, undergoes a liquid-to-gel phase transition in a concentration dependent manner. Unlike other gelling proteins such as gelatin, our data support a mechanism in which gelation of CAHS D is driven by intermolecular beta-beta interactions. We find that gelation of CAHS D promotes the slowing of diffusion, and coordination of residual water. Slowed diffusion and increased water coordination correlate with the ability of CAHS D to provide robust stabilization of an enzyme, lactate dehydrogenase, which otherwise unfolds when dried. Conversely, slowed diffusion and water coordination do not promote the prevention of protein aggregation during drying. Our study demonstrates that distinct mechanisms are required for holistic protection during desiccation, and that protectants, such as CAHS D, can act as "molecular Swiss army knives" capable of providing protection through several different mechanisms simultaneously.


2021 ◽  
Vol 22 (15) ◽  
pp. 8171
Author(s):  
Essa M. Saied ◽  
Christoph Arenz

Sphingolipids are ubiquitous in eukaryotic plasma membranes and play major roles in human and animal physiology and disease. This class of lipids is usually defined as being derivatives of sphingosine, a long-chain 1,3-dihydroxy-2-amino alcohol. Various pathological conditions such as diabetes or neuropathy have been associated with changes in the sphingolipidome and an increased biosynthesis of structurally altered non-canonical sphingolipid derivatives. These unusual or non-canonical sphingolipids hold great promise as potential diagnostic markers. However, due to their low concentrations and the unavailability of suitable standards, the research to explore the secret of this class of ‘Sphinx’ lipids is ultimately hampered. Therefore, the development of efficient and facile syntheses of standard compounds is a key endeavor. Here, we present various chemical approaches for stereoselective synthesis and in-depth chemical characterization of a set of novel sphingoid bases which were recently utilized as valuable tools to explore the metabolism and biophysical properties of sphingolipids, but also to develop efficient analytical methods for their detection and quantification.


2021 ◽  
Vol 376 (1831) ◽  
pp. 20200227
Author(s):  
Xavier A. Harrison

Recent advances in tagging and biologging technology have yielded unprecedented insights into wild animal physiology. However, time-series data from such wild tracking studies present numerous analytical challenges owing to their unique nature, often exhibiting strong autocorrelation within and among samples, low samples sizes and complicated random effect structures. Gleaning robust quantitative estimates from these physiological data, and, therefore, accurate insights into the life histories of the animals they pertain to, requires careful and thoughtful application of existing statistical tools. Using a combination of both simulated and real datasets, I highlight the key pitfalls associated with analysing physiological data from wild monitoring studies, and investigate issues of optimal study design, statistical power, and model precision and accuracy. I also recommend best practice approaches for dealing with their inherent limitations. This work will provide a concise, accessible roadmap for researchers looking to maximize the yield of information from complex and hard-won biologging datasets. This article is part of the theme issue ‘Measuring physiology in free-living animals (Part II)’.


Sign in / Sign up

Export Citation Format

Share Document