maximum cardinality
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 33)

H-INDEX

13
(FIVE YEARS 1)

Algorithmica ◽  
2022 ◽  
Author(s):  
Boris Klemz ◽  
Günter Rote

AbstractA bipartite graph $$G=(U,V,E)$$ G = ( U , V , E ) is convex if the vertices in V can be linearly ordered such that for each vertex $$u\in U$$ u ∈ U , the neighbors of u are consecutive in the ordering of V. An induced matchingH of G is a matching for which no edge of E connects endpoints of two different edges of H. We show that in a convex bipartite graph with n vertices and mweighted edges, an induced matching of maximum total weight can be computed in $$O(n+m)$$ O ( n + m ) time. An unweighted convex bipartite graph has a representation of size O(n) that records for each vertex $$u\in U$$ u ∈ U the first and last neighbor in the ordering of V. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n) time. If no compact representation is given, the cover can be computed in $$O(n+m)$$ O ( n + m ) time. All of our algorithms achieve optimal linear running time for the respective problem and model, and they improve and generalize the previous results in several ways: The best algorithms for the unweighted problem versions had a running time of $$O(n^2)$$ O ( n 2 ) (Brandstädt et al. in Theor. Comput. Sci. 381(1–3):260–265, 2007. 10.1016/j.tcs.2007.04.006). The weighted case has not been considered before.


2021 ◽  
Vol 94 (12) ◽  
Author(s):  
Till Kahlke ◽  
Martin Fränzle ◽  
Alexander K. Hartmann

Abstract We study numerically the maximum z-matching problems on ensembles of bipartite random graphs. The z-matching problems describes the matching between two types of nodes, users and servers, where each server may serve up to z users at the same time. Using a mapping to standard maximum-cardinality matching, and because for the latter there exists a polynomial-time exact algorithm, we can study large system sizes of up to $$10^6$$ 10 6 nodes. We measure the capacity and the energy of the resulting optimum matchings. First, we confirm previous analytical results for bipartite regular graphs. Next, we study the finite-size behaviour of the matching capacity and find the same scaling behaviour as before for standard matching, which indicates the universality of the problem. Finally, we investigate for bipartite Erdős–Rényi random graphs the saturability as a function of the average degree, i.e. whether the network allows as many customers as possible to be served, i.e. exploiting the servers in an optimal way. We find phase transitions between unsaturable and saturable phases. These coincide with a strong change of the running time of the exact matching algorithm, as well with the point where a minimum-degree heuristic algorithm starts to fail. Graphical Abstract


2021 ◽  
Vol 13 (2) ◽  
pp. 356-366
Author(s):  
Dániel Gerbner ◽  
Abhishek Methuku ◽  
Dániel T. Nagy ◽  
Balázs Patkós ◽  
Máté Vizer

Abstract In this short note we consider the oriented vertex Turán problem in the hypercube: for a fixed oriented graph F → \vec F , determine the maximum cardinality e x v ( F → , Q → n ) e{x_v}\left( {\vec F,{{\vec Q}_n}} \right) of a subset U of the vertices of the oriented hypercube Q → n {\vec Q_n} such that the induced subgraph Q → n [ U ] {\vec Q_n}\left[ U \right] does not contain any copy of F → \vec F . We obtain the exact value of e x v ( P k , →   Q n → ) e{x_v}\left( {\overrightarrow {{P_k},} \,\overrightarrow {{Q_n}} } \right) for the directed path P k → \overrightarrow {{P_k}} , the exact value of e x v ( V 2 → ,   Q n → ) e{x_v}\left( {\overrightarrow {{V_2}} ,\,\overrightarrow {{Q_n}} } \right) for the directed cherry V 2 → \overrightarrow {{V_2}} and the asymptotic value of e x v ( T → , Q n → ) e{x_v}\left( {\overrightarrow T ,\overrightarrow {{Q_n}} } \right) for any directed tree T → \vec T .


Author(s):  
Olga Kuryatnikova ◽  
Renata Sotirov ◽  
Juan C. Vera

The maximum k-colorable subgraph (MkCS) problem is to find an induced k-colorable subgraph with maximum cardinality in a given graph. This paper is an in-depth analysis of the MkCS problem that considers various semidefinite programming relaxations, including their theoretical and numerical comparisons. To simplify these relaxations, we exploit the symmetry arising from permuting the colors, as well as the symmetry of the given graphs when applicable. We also show how to exploit invariance under permutations of the subsets for other partition problems and how to use the MkCS problem to derive bounds on the chromatic number of a graph. Our numerical results verify that the proposed relaxations provide strong bounds for the MkCS problem and that those outperform existing bounds for most of the test instances. Summary of Contribution: The maximum k-colorable subgraph (MkCS) problem is to find an induced k-colorable subgraph with maximum cardinality in a given graph. The MkCS problem has a number of applications, such as channel assignment in spectrum sharing networks (e.g., Wi-Fi or cellular), very-large-scale integration design, human genetic research, and so on. The MkCS problem is also related to several other optimization problems, including the graph partition problem and the max-k-cut problem. The two mentioned problems have applications in parallel computing, network partitioning, floor planning, and so on. This paper is an in-depth analysis of the MkCS problem that considers various semidefinite programming relaxations, including their theoretical and numerical comparisons. Further, our analysis relates the MkCS results with the stable set and the chromatic number problems. We provide extended numerical results that verify that the proposed bounding approaches provide strong bounds for the MkCS problem and that those outperform existing bounds for most of the test instances. Moreover, our lower bounds on the chromatic number of a graph are competitive with existing bounds in the literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zill-e-Shams ◽  
Muhammad Salman ◽  
Zafar Ullah ◽  
Usman Ali

Graph partitioning has been studied in the discipline between computer science and applied mathematics. It is a technique to distribute the whole graph data as a disjoint subset to a different device. The minimum graph partition problem with respect to an independence system of a graph has been studied in this paper. The considered independence system consists of one of the independent sets defined by Boutin. We solve the minimum partition problem in path graphs, cycle graphs, and wheel graphs. We supply a relation of twin vertices of a graph with its independence system. We see that a maximal independent set is not always a minimal set in some situations. We also provide realizations about the maximum cardinality of a minimum partition of the independence system. Furthermore, we study the comparison of the metric dimension problem of a graph with the minimum partition problem of that graph.


Author(s):  
Rafik Sahbi

A partition $\pi=\{V_{1},V_{2},...,V_{k}\}$ of the vertex set $V$ of a graph $G$ into $k$ color classes $V_{i},$ with $1\leq i\leq k$ is called a quorum coloring if for every vertex $v\in V,$ at least half of the vertices in the closed neighborhood $N[v]$ of $v$ have the same color as $v$. The maximum cardinality of a quorum coloring of $G$ is called the quorum coloring number of $G$ and is denoted $\psi_{q}(G).$ In this paper, we give answers to four open problems stated in 2013 by Hedetniemi, Hedetniemi, Laskar and Mulder. In particular, we show that there is no good characterization of the graphs $G$ with $\psi_{q}(G)=1$ nor for those with $\psi_{q} (G)>1$ unless $\mathcal{P}\neq\mathcal{NP}\cap co-\mathcal{NP}.$ We also construct several new infinite  families of such graphs, one of which the diameter $diam(G)$ of $G$ is not bounded.


2021 ◽  
Vol 14 (2) ◽  
pp. 537-550
Author(s):  
Hearty Nuenay Maglanque ◽  
Ferdinand P. Jamil

Given a connected graph $G$, we say that $S\subseteq V(G)$ is a cost effective dominating set in $G$ if, each vertex in $S$ is adjacent to at least as many vertices outside $S$ as inside $S$ and that every vertex outside $S$ is adjacent to at least one vertex in $S$. The minimum cardinality of a cost effective dominating set is the cost effective domination number of $G$. The maximum cardinality of a cost effective dominating set is the upper cost effective domination number of $G$, and is denoted by $\gamma_{ce}^+(G).$ A cost effective dominating set is said to be minimal if it does not contain a proper subset which is itself a cost effective dominating in $G$. The maximum cardinality of a minimal cost effective dominating set in a graph $G$ is the minimal cost effective domination number of $G$, and is denoted by $\gamma_{mce}(G)$. In this paper we provide bounds on upper cost effective domination number and minimal cost effective domination number of a connected graph G and characterized those graphs whose upper and minimal cost effective domination numbers are either $1, 2$ or $n-1.$ We also establish a Nordhaus-Gaddum type result for the introduced parameters and solve some realization problems.


Author(s):  
Mikhail Ganzhinov ◽  
Ferenc Szöllősi

AbstractLine systems passing through the origin of the d-dimensional Euclidean space admitting exactly two distinct angles are called biangular. It is shown that the maximum cardinality of biangular lines is at least $$2(d-1)(d-2)$$ 2 ( d - 1 ) ( d - 2 ) , and this result is sharp for $$d\in \{4,5,6\}$$ d ∈ { 4 , 5 , 6 } . Connections to binary codes, few-distance sets, and association schemes are explored, along with their multiangular generalization.


Sign in / Sign up

Export Citation Format

Share Document