polygonum cuspidatum
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 65)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ting Tao ◽  
Qing Zhang ◽  
Zibo Liu ◽  
Ting Zhang ◽  
Lingyu Wang ◽  
...  

Polygonum cuspidatum (PC) has been reported to exert a potent antihyperlipidemic effect. However, its mechanisms of action and active ingredients remain elusive and require further research. In this study, we first conducted in vivo experiments to validate that Polygonum cuspidatum extract (PCE) could ameliorate the blood lipid level in hyperlipidemia model rats. Then, ultrahigh performance liquid chromatography coupled with Q-Exactive MS/MS (UPLC-QE-MS/MS) was applied to verify its 12 main active ingredients. The pharmacophore matching model was employed to predict the target point of the active ingredient, and 27 overlapping genes were identified via database and literature mining. String online database and Cytoscape software were utilized to construct a Protein-Protein Interaction (PPI) network, followed by function annotation analysis and pathway enrichment analysis. The results showed that the PI3K/AKT signaling pathway and its downstream FOXO3/ERα factors were significantly enriched. Furthermore, in vitro experiments were performed to determine the lipid content and oxidative stress (OS) indicators in OA-induced HepG2 cells, and immunofluorescence and western blotting analysis were carried out to analyze the effects of PCE on related proteins. Our experimental results show that the mechanism of antihyperlipidemic action of PCE is related to the activation of the PI3K/AKT signaling pathway and its downstream FOXO3/ERα factors, and polydatin and resveratrol are the main active ingredients in PCE that exert antihyperlipidemic effects.


2021 ◽  
Vol 173 ◽  
pp. 114140
Author(s):  
Jian-Dong Wang ◽  
Li-Na Fu ◽  
Li-Tao Wang ◽  
Zi-Hui Cai ◽  
Yan-Qiu Wang ◽  
...  

Drug Research ◽  
2021 ◽  
Author(s):  
Arshpreet Kaur ◽  
Ruchi Tiwari ◽  
Gaurav Tiwari ◽  
Vadivelan Ramachandran

AbstractResveratrol (RSV), the most effective stilbene phytoalexin synthesized naturally or induced in plants as part of their defense mechanism, is a key component of natural phenolic compounds and is being considered as a treatment option for a variety of diseases. RSV was discovered in the skin of red grapes, mulberries, peanuts, pines, and Polygonum cuspidatum weed root extracts. It was first extracted from white hellebore (Veratrum grandiflorum O. Loes) roots in 1940, then from Polygonum cuspidatum roots in 1963. However, RSV’s use as a drug is limited due to its initial conformational strength and poor stability. The research focused on a set of RSV biological activity data. RSV has been the subject of growing concern, despite its wide range of biological and therapeutic applications. According to the literature, RSV has antioxidant, anti-cancer, cardioprotective, neuroprotective, anti- inflammatory, anti-microbial, immunomodulatory, and radioprotective properties. The current analysis summarized biological applications of RSV, their mechanisms of action, and recent scientific development in the area of their delivery. It is possible to infer that RSV has many effects on infected cells’ cellular functions.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Hongyan Hu ◽  
Zhijun Wu ◽  
Haili Fan ◽  
Guowei Wang ◽  
...  

Abstract Background Polygonum cuspidatum Sieb. et Zucc. is a well-known medicinal plant whose pharmacological effects derive mainly from its stilbenes, anthraquinones, and flavonoids. These compounds accumulate differentially in the root, stem, and leaf; however, the molecular basis of such tissue-specific accumulation remains poorly understood. Because tissue-specific accumulation of compounds is usually associated with tissue-specific expression of the related biosynthetic enzyme genes and regulators, we aimed to clarify and compare the transcripts expressed in different tissues of P. cuspidatum in this study. Results High-throughput RNA sequencing was performed using three different tissues (the leaf, stem, and root) of P. cuspidatum. In total, 80,981 unigenes were obtained, of which 40,729 were annotated, and 21,235 differentially expressed genes were identified. Fifty-four candidate synthetase genes and 12 transcription factors associated with stilbene, flavonoid, and anthraquinone biosynthetic pathways were identified, and their expression levels in the three different tissues were analyzed. Phylogenetic analysis of polyketide synthase gene families revealed two novel CHS genes in P. cuspidatum. Most phenylpropanoid pathway genes were predominantly expressed in the root and stem, while methylerythritol 4-phosphate and isochorismate pathways for anthraquinone biosynthesis were dominant in the leaf. The expression patterns of synthase genes were almost in accordance with metabolite profiling in different tissues of P. cuspidatum as measured by high-performance liquid chromatography or ultraviolet spectrophotometry. All predicted transcription factors associated with regulation of the phenylpropanoid pathway were expressed at lower levels in the stem than in the leaf and root, but no consistent trend in their expression was observed between the leaf and the root. Conclusions The molecular knowledge of key genes involved in the biosynthesis of P. cuspidatum stilbenes, flavonoids, and anthraquinones is poor. This study offers some novel insights into the biosynthetic regulation of bioactive compounds in different P. cuspidatum tissues and provides valuable resources for the potential metabolic engineering of this important medicinal plant.


Sign in / Sign up

Export Citation Format

Share Document