coupling agents
Recently Published Documents


TOTAL DOCUMENTS

1248
(FIVE YEARS 184)

H-INDEX

65
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 494
Author(s):  
Dariusz Brząkalski ◽  
Robert E. Przekop ◽  
Miłosz Frydrych ◽  
Daria Pakuła ◽  
Marta Dobrosielska ◽  
...  

In this work, silsesquioxane and spherosilicate compounds were assessed as novel organosilicon coupling agents for surface modification of TiO2 in a green process, and compared with their conventional silane counterparts. The surface-treated TiO2 particles were then applied in preparation of epoxy (EP) composites and the aspects of pigment dispersion, suspension stability, hiding power, as well as the composite mechanical and thermal properties were discussed. The studied compounds loading was between 0.005–0.015% (50–150 ppm) in respect to the bulk composite mass and resulted in increase of suspension stability and hiding power by over an order of magnitude. It was found that these compounds may be an effective alternative for silane coupling agents, yet due to their low cost and simplicity of production and manipulation, silanes and siloxanes are still the most straight-forward options available. Nonetheless, the obtained findings might encourage tuning of silsesquioxane compounds structure and probably process itself if implementation of these novel organosilicon compounds as surface treatment agents is sought for special applications, e.g., high performance coating systems.


2022 ◽  
Author(s):  
Jialong Yu ◽  
Weiyu Wang ◽  
Shumin Li ◽  
Beibei Yu ◽  
Hongyu Chen ◽  
...  

Seaweed-like Au nanowires were synthesized without any nanoparticle seeds. The amino silcane coupling agent 3-aminopropyltriethoxysilane was used to form the active surface on Au substrate to facilitate one dimensional growth....


2021 ◽  
Vol 12 (1) ◽  
pp. 159
Author(s):  
Stefanos Karkanis ◽  
Alexandros K. Nikolaidis ◽  
Elisabeth A. Koulaouzidou ◽  
Dimitris S. Achilias

Dental nanocomposite resins have been proposed as potential restorative materials that are inevitably challenged with dynamic oral conditions. This investigation focused on the contribution of miscellaneous silane blends, used as coupling agents, to the ultimate performance of dental nanocomposite dimethacrylate resins. Herein, silica nanoparticles were initially silanized with functional/functional or functional/non-fuctional silane mixtures (50/50 wt/wt). Fourier transforms infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) verified the modification of nanosilica. The organomodified nanoparticles were then inserted into Bis-GMA/TEGDMA based resins by hand spatulation process. Scanning electron microscopy (SEM) findings revealed a broad distribution of fillers in the polymer network when reactive silanes and their corresponding blends were used. Furthermore, optical profilometry results showed that the presence of functional/non-functional mixtures can produce relatively smooth composite surfaces. Polymerization shrinkage was found to be limited upon the decrease of the degree of conversion regarding all the tested silane mixtures. The functional/functional silane blend assured the highest flexural properties and the lowest solubility after the storage of the nanocomposite in water for 1 week at 37 °C. The above experimental data could contribute to the proper designing of dental nanocomposite resins which may fit the modern clinical applications.


2021 ◽  
Vol 11 (1) ◽  
pp. 167-175
Author(s):  
Yonghui Zhou ◽  
David Hui ◽  
Yuxuan Wang ◽  
Mizi Fan

Abstract This article presents the assessment of bulk and in situ mechanical properties of rubber–wood–plastic composites (RubWPC) and their correlations, aiming to obtain a thorough understanding of mechanical behaviour of RubWPC, which is an essential prerequisite in realising their optimal design and applications. Dynamic mechanical analysis results showed that the composites treated with multiple coupling agents (combination of maleic anhydride polyethylene [MAPE] and bis(triethoxysilylpropyl)tetrasulfide and combination of MAPE and vinyltrimethoxysilane) exhibited greater storage modulus than both the untreated and single coupling agent treated composites owing to their superior interfacial bonding quality. The shift of relaxation peak and T g towards higher temperatures observed in the treated composites confirmed the enhancement of interfacial interaction and adhesion. Nanoindentation analysis suggested that the composite with optimised interface (MAPE and Si69 treated) possessed better nanomechanical property (elastic modulus) due to the resin penetration into cell lumens and vessels and the reaction between cell walls and coupling agents.


2021 ◽  
Vol 17 (2) ◽  
pp. 47-72
Author(s):  
Yi-Shan Huang ◽  
◽  
Chao-Wei Huang ◽  
Van-Huy Nguyen ◽  
Yen-Han Wang ◽  
...  

Organic dye-sensitised SrTiO3:Rh and WO3 were served as H2 catalysts and O2 catalysts in a Z-scheme system to conduct photocatalytic pure water splitting. To enhance the light absorption capacity, the composites of organic dye (N3, N719, Z907, black dye, C101, and K19) and SrTiO3:Rh were synthesised via physical adsorption and then verified by the performance of photocatalytic hydrogen evolution. Among these dyes, N3-SrTiO3:Rh revealed visible light absorption and exhibited the best photocatalytic activity. Therefore, N3 dye was adopted, and silane coupling agents were used to form chemical bonding with SrTiO3:Rh. Furthermore, the photocatalytic pure water splitting of N3-SrTiO3:Rh was investigated in a single reactor, and a twin photoreactor with Fe2+ and Fe3+ ions served as the electron mediators, respectively. The highest quantum efficiency can reach 0.0259% in a twin reactor when compared with the single reactor (0.0052%) because of the improvement in the light absorption from N3 and inhibition of the backward reaction of water splitting. Consequently, organic dye-sensitised photocatalysts are highly effective and eco-friendly in conducting photocatalytic pure water splitting.


Cellulose ◽  
2021 ◽  
Author(s):  
Xueyang Song ◽  
Cuicui Fang ◽  
Yuanyuan Li ◽  
Ping Wang ◽  
Yan Zhang ◽  
...  

Author(s):  
Tomasz Sokolnicki ◽  
Adrian Franczyk ◽  
Bartlomiej Janowski ◽  
Jedrzej Walkowiak

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6384
Author(s):  
Xiaoping Li ◽  
Mingli Qiang ◽  
Mingwei Yang ◽  
Jeffrey J. Morrell ◽  
Neng Zhang

Natural fiber/plastic composites combine the low density and excellent mechanical properties of the natural fiber with the flexibility and moisture resistance of the plastic to create materials tailored to specific applications in theory. Wood/plastic composites (WPC) are the most common products, but many other fibers are being explored for this purpose. Among the more common is hemp hurd. Natural fibers are hydrophilic materials and plastics are hydrophobic, therefore one problem with all of these products is the limited ability of the fiber to interact with the plastic to create a true composite. Thus, compatibilizers are often added to enhance interactions, but fiber pretreatments may also help improve compatibility. The effects of pectinase or cellulase pretreatment of wood/hemp fiber mixtures in combination with coupling agents were evaluated in polypropylene panels. Pretreatments with pectinase or cellulase were associated with reduced thickness swell (TS24h) as well as increased modulus of rupture and modulus of elasticity. Incorporation of 5.0% silane or 2.5% silane/2.5% titanate as a coupling agent further improved pectinase-treated panel properties, but was associated with diminished properties in cellulase treated fibers. Combinations of enzymatic pretreatment and coupling agents enhanced fiber/plastic interactions and improved flexural properties, but the effects varied with the enzyme or coupling agent employed. The results illustrate the potential for enhancing fiber/plastic interactions to produce improved composites.


Sign in / Sign up

Export Citation Format

Share Document