fringe shift
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 34 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Filip Dambi Filipescu

The derivation of light paths in the Michelson interferometer is based on the hypothesis that the incident speed and reflected speed of the wavefront of a ray of light are equal in the frame at absolute rest. In this case, the Michelson‐Morley experiment predicts a fringe shift of <mml:math display="inline"> <mml:mrow> <mml:mo> </mml:mo> <mml:mn>0.40</mml:mn> </mml:mrow> </mml:math> . With the hypothesis that the incident speed and reflected speed of the wavefront of a ray of light are equal in the inertial frame of a mirror at the instance of collision, the Michelson interferometer with a particular geometry predicts zero fringe shift, which is in agreement with the result of the Michelson‐Morley experiment.


2021 ◽  
Vol 34 (3) ◽  
pp. 389-396
Author(s):  
Filip Dambi Filipescu

The derivation of light paths in the Michelson interferometer is based on the hypothesis that the incident speed and reflected speed of the wavefront of a ray of light are equal in the frame at absolute rest. In this case, the Michelson‐Morley experiment predicts a fringe shift of 0.40. With the hypothesis that the incident speed and reflected speed of the wavefront of a ray of light are equal in the inertial frame of a mirror at the instance of collision, the Michelson‐Morley experiment predicts a fringe shift of 0.40 × 10−4, which is in agreement with the experimental result.


Author(s):  
Filip Dambi

Derivation of light paths in the Michelson interferometer is based on the hypothesis that the speed of light does not change after reflection by a mirror in motion. The Michelson-Morley experiment predicts a fringe shift of 0.40. The same fringe shift is predicted for a particular Michelson interferometer in which the beam splitter of the interferometer makes an angle of 45&deg; with the direction of light from the source. Light behaves like a wave and also as a particle. Thus, it is reasonable to consider the reflection of light as a mechanical phenomenon. With this hypothesis, the speed of light changes after reflection, and the predicted fringe shift for the particular Michelson interferometer is zero which is in accordance with the result of the Michelson-Morley experiment. Apparently, light travels in any inertial frame as if this particular interferometer belongs to a fixed frame. The velocity of light is considered independent of the velocity of its source, which is in accordance with astronomers&rsquo; observations of the binary stars, and the experiment performed at CERN, Geneva, in 1964.


2020 ◽  
Vol 117 (4) ◽  
pp. 043301
Author(s):  
Jingyu Liu ◽  
Bin Liu ◽  
Dandan Liu ◽  
Luyao Xiong ◽  
Jingling Shen ◽  
...  

2016 ◽  
Vol 8 (4) ◽  
pp. 134
Author(s):  
Jiri Stavek

<p class="1Body">One formula with two trigonometric corrections describing the round trip of the beams in the Michelson-Morley experiment is presented. The first trigonometric correction describes the round trip path of those beams, while the second trigonometric correction describes the trigonometric geometric mean of the two-way speed of those beams. This formula gives the null fringe shift result for the first order experiments (Fizeau experiment, Hoek experiment), the null fringe shift result for the second order experiment (Michelson-Morley experiment), and predicts a measurable fringe shift result for the fourth order experiment. This trigonometric model can be tested experimentaly by the advanced LIGO (Laser Interferometer Gravitational-Waves Observatory) technology with three arms separated by the angle π/4 and the longitudinal arm directed to the CMB rest frame in the direction to the constellation Crater (known in the Greek mythology as the Cup of the god Apollo). This proposed fourth order experiment can be named as the advanced LIFE (Laser Interferometer Fringe Enigma) experiment. The published predictions before the arrival of experimental data from the advanced LIFE experiment can estimate the power of our models.</p>


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
A. M. Hamed ◽  
M. A. Saudy

In this paper, a method of processing argon plasma images, obtained from the DC pseudo glow discharge technique, using two- and multiple-beam interference is suggested. This method is based on measuring the image fringe shift from the background interference fringes. Hence, this mapping of intensity shift is related to the electron density distribution of the argon plasma. Also, the refractive index of the plasma is computed from the electron density values. The contrast of the interferometer images in presence of plasma shift is investigated in both cases of two- and multiple-beam interference.


Sign in / Sign up

Export Citation Format

Share Document