community detection
Recently Published Documents


TOTAL DOCUMENTS

3621
(FIVE YEARS 1377)

H-INDEX

70
(FIVE YEARS 13)

2022 ◽  
Vol 16 (4) ◽  
pp. 1-22
Author(s):  
Liudmila Prokhorenkova ◽  
Alexey Tikhonov ◽  
Nelly Litvak

Information diffusion, spreading of infectious diseases, and spreading of rumors are fundamental processes occurring in real-life networks. In many practical cases, one can observe when nodes become infected, but the underlying network, over which a contagion or information propagates, is hidden. Inferring properties of the underlying network is important since these properties can be used for constraining infections, forecasting, viral marketing, and so on. Moreover, for many applications, it is sufficient to recover only coarse high-level properties of this network rather than all its edges. This article conducts a systematic and extensive analysis of the following problem: Given only the infection times, find communities of highly interconnected nodes. This task significantly differs from the well-studied community detection problem since we do not observe a graph to be clustered. We carry out a thorough comparison between existing and new approaches on several large datasets and cover methodological challenges specific to this problem. One of the main conclusions is that the most stable performance and the most significant improvement on the current state-of-the-art are achieved by our proposed simple heuristic approaches agnostic to a particular graph structure and epidemic model. We also show that some well-known community detection algorithms can be enhanced by including edge weights based on the cascade data.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Zhejian Zhang

As one of the cores of data analysis in large social networks, community detection has become a hot research topic in recent years. However, user’s real social relationship may be at risk of privacy leakage and threatened by inference attacks because of the semitrusted server. As a result, community detection in social graphs under local differential privacy has gradually aroused the interest of industry and academia. On the one hand, the distortion of user’s real data caused by existing privacy-preserving mechanisms can have a serious impact on the mining process of densely connected local graph structure, resulting in low utility of the final community division. On the other hand, private community detection requires to use the results of multiple user-server interactions to adjust user’s partition, which inevitably leads to excessive allocation of privacy budget and large error of perturbed data. For these reasons, a new community detection method based on the local differential privacy model (named LDPCD) is proposed in this paper. Due to the introduction of truncated Laplace mechanism, the accuracy of user perturbation data is improved. In addition, the community divisive algorithm based on extremal optimization (EO) is also refined to reduce the number of interactions between users and the server. Thus, the total privacy overhead is reduced and strong privacy protection is guaranteed. Finally, LDPCD is applied in two commonly used real-world datasets, and its advantage is experimentally validated compared with two state-of-the-art methods.


Author(s):  
Christian Toth ◽  
Denis Helic ◽  
Bernhard C. Geiger

AbstractComplex systems, abstractly represented as networks, are ubiquitous in everyday life. Analyzing and understanding these systems requires, among others, tools for community detection. As no single best community detection algorithm can exist, robustness across a wide variety of problem settings is desirable. In this work, we present Synwalk, a random walk-based community detection method. Synwalk builds upon a solid theoretical basis and detects communities by synthesizing the random walk induced by the given network from a class of candidate random walks. We thoroughly validate the effectiveness of our approach on synthetic and empirical networks, respectively, and compare Synwalk’s performance with the performance of Infomap and Walktrap (also random walk-based), Louvain (based on modularity maximization) and stochastic block model inference. Our results indicate that Synwalk performs robustly on networks with varying mixing parameters and degree distributions. We outperform Infomap on networks with high mixing parameter, and Infomap and Walktrap on networks with many small communities and low average degree. Our work has a potential to inspire further development of community detection via synthesis of random walks and we provide concrete ideas for future research.


Author(s):  
Georgia Baltsou ◽  
Konstantinos Tsichlas ◽  
Athena Vakali

Algorithms ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 20
Author(s):  
Yinan Chen ◽  
Chuanpeng Wang ◽  
Dong Li

Complex networks usually consist of dense-connected cliques, which are defined as communities. A community structure is a reflection of the local characteristics existing in the network topology, this makes community detection become an important research field to reveal the internal structural characteristics of networks. In this article, an information-based community detection approach MINC-NRL is proposed, which can be applied to both overlapping and non-overlapping community detection. MINC-NRL introduces network representation learning (NRL) to represent the target network as vectors, then generates a community evolution process based on these vectors to reduce the search space, and finally, finds the best community partition in this process using mutual information between network and communities (MINC). Experiments on real-world and synthetic data sets verifies the effectiveness of the approach in community detection, both on non-overlapping and overlapping tasks.


2022 ◽  
Vol 16 (5) ◽  
Author(s):  
Yang Chang ◽  
Huifang Ma ◽  
Liang Chang ◽  
Zhixin Li

Computing ◽  
2022 ◽  
Author(s):  
Anisha Kumari ◽  
Ranjan Kumar Behera ◽  
Bibudatta Sahoo ◽  
Satya Prakash Sahoo

Sign in / Sign up

Export Citation Format

Share Document