dispersive solid phase extraction
Recently Published Documents


TOTAL DOCUMENTS

650
(FIVE YEARS 279)

H-INDEX

47
(FIVE YEARS 16)

Dairy ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 658-670
Author(s):  
Melissa Di Rocco ◽  
Johann Scollard ◽  
Riona Sayers ◽  
Ambrose Furey ◽  
Martin Danaher ◽  
...  

The aim of this study was to investigate the distribution of cefquinome in different dairy products during the processing of naturally contaminated milk or spiked milk. The analysis of cefquinome residues in milk, skimmed milk, buttermilk, whey, cream, butter, curd, and cheese samples was performed using a water:acetonitrile solvent extraction and C18 dispersive solid-phase extraction (d-SPE) clean-up, followed by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS/MS) determination. The target concentration of cefquinome was achieved in the spiked milk (100 µg kg−1). During its processing, the antibiotic migrated primarily with the skimmed milk as opposed to cream (ratios of 3.6:1 and 2.8:1 for experiments A and B, respectively), and with the buttermilk during butter manufacture (ratios of 6.9:1 and 4.6:1), but was equal in the curd and whey during the manufacture of cheese. In the milk collected from treated animals, the measured concentration of cefquinome was considerably high (approx. 5000 µg kg−1). The results obtained from the dairy products were similar to those obtained in the spiked study (ratios of 8.2:1 and 3.1:1 for experiments A and B, respectively, during the separation of skimmed milk and cream; 6.0:1 and 5.0:1 for A and B, respectively, during the separation of buttermilk and butter). However, during cheesemaking, cefquinome migrated with the whey after cutting the curd, with ratios of 0.54:1 and 0.44:1 for experiments A and B, respectively. The difference in the migration of cefquinome between curd and whey in spiked and animal studies is probably due to the different concentration levels in the two different experiments. The results of this study showed that, in dairy products manufactured from milk containing cefquinome residues, the drug migrated primarily with the high-water-containing fractions.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6727
Author(s):  
Saida Belarbi ◽  
Martin Vivier ◽  
Wafa Zaghouani ◽  
Aude De Sloovere ◽  
Valerie Agasse ◽  
...  

Pesticide extraction in rapeseed samples remains a great analytical challenge due to the complexity of the matrix, which contains proteins, fatty acids, high amounts of triglycerides and cellulosic fibers. An HPLC-MS/MS method was developed for the quantification of 179 pesticides in rapeseeds. The performances of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method were evaluated using different dispersive solid-phase extraction (d-SPE) sorbents containing common octadecylsilane silica/primary–secondary amine adsorbent (PSA/C18) and new commercialized d-SPE materials dedicated to fatty matrices (Z-Sep, Z-Sep+, and EMR-Lipid). The analytical performances of these different sorbents were compared according to the SANTE/12682/2019 document. The best results were obtained using EMR-Lipid in terms of pesticide average recoveries (103 and 70 of the 179 targeted pesticides exhibited recoveries within 70–120% and 30–70%, respectively, with low RSD values). Moreover, the limits of quantification (LOQ) range from 1.72 µg/kg to 6.39 µg/kg for 173 of the pesticides. Only the recovery for tralkoxydim at 10 μg/kg level was not satisfactory (29%). The matrix effect was evaluated and proved to be limited between −50% and 50% for 169 pesticides with this EMR-Lipid and freezing. GC-Orbitrap analyses confirmed the best efficiency of the EMR-Lipid sorbent for the purification of rapeseeds.


Sign in / Sign up

Export Citation Format

Share Document