elastic buckling
Recently Published Documents


TOTAL DOCUMENTS

650
(FIVE YEARS 96)

H-INDEX

37
(FIVE YEARS 5)

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hiroshi Yoshihara ◽  
Makoto Maruta

Abstract Buckling tests were conducted using slender specimens of western hemlock. In the tests, the slenderness ratio was varied from 132 to 418 in which elastic buckling was induced, and the values of the critical load for buckling were obtained. When the deflection of the specimen was calculated from the loading-line displacement based on elastica theory, the value of deflection/load initially decreased because the compressive deformation was more dominant than the bending deformation. In contrast, when the load increased, the bending deformation became dominant, and the deflection/load-deflection relation exhibited linearity. These tendencies indicated that the transition from compression to bending was induced around the minimum value of the deflection/load. Therefore, it was recommended to determine the critical load for buckling using the load at the minimum value of the deflection/load where the deflection was calculated from the loading-line displacement.


2021 ◽  
Author(s):  
Vitaliy Degtyarev ◽  
Konstantinos Daniel Tsavdaridis

Large web openings introduce complex structural behaviors and additional failure modes of steel cellular beams, which must be considered in the design using laborious calculations (e.g., exercising SCI P355). This paper presents seven machine learning (ML) models, including decision tree (DT), random forest (RF), k-nearest neighbor (KNN), gradient boosting regressor (GBR), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and gradient boosting with categorical features support (CatBoost), for predicting the elastic buckling and ultimate loads of steel cellular beams. Large datasets of finite element (FE) simulation results, validated against experimental data, were used to develop the models. The ML models were fine-tuned via an extensive hyperparameter search to obtain their best performance. The elastic buckling and ultimate loads predicted by the optimized ML models demonstrated excellent agreement with the numerical data. The accuracy of the ultimate load predictions by the ML models exceeded the accuracy provided by the existing design provisions for steel cellular beams published in SCI P355 and AISC Design Guide 31. The relative feature importance and feature dependence of the models were evaluated and discussed in the paper. An interactive Python-based notebook and a user-friendly web application for predicting the elastic buckling and ultimate loads of steel cellular beams using the developed optimized ML models were created and made publicly available. The web application deployed to the cloud allows for making predictions in any web browser on any device, including mobile. The source code of the application available on GitHub allows running the application locally and independently from the cloud service.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1923-1935
Author(s):  
Ashish P. Khatri ◽  
Sai Ram Katikala ◽  
Vijaya Krishna Kotapati

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 3515-3525
Author(s):  
Yanchun Li ◽  
Tianhua Zhou ◽  
Lujie Ren ◽  
Liurui Sang ◽  
Lei Zhang

2021 ◽  
Vol 2045 (1) ◽  
pp. 012021
Author(s):  
Y D Fu ◽  
X Y Dai ◽  
H D Zhang ◽  
K G Shang

Abstract In order to study the stability performance of the three-limbed steel tube latticed column, the finite element numerical analysis method based on the structural stability theory is adopted. Firstly, the linear analysis of the three-limbed steel tube latticed column without diagonal lacing bar is carried out, and the calculation method of elastic buckling load considering the influence of shear deformation is obtained. Then, the elastic buckling analysis and elastoplastic buckling analysis three-limbed steel tube latticed column with diagonal lacing bar are carried out. The elastic buckling load and elastoplastic buckling load of three-limbed steel tube latticed column with diagonal lacing bar are studied when only the global initial geometric defects, only the member initial geometric defects, and both kinds of defects are considered at the same time. The results show that the direct finite element analysis method can be used to calculate the elastic buckling load of three-limbed steel tube latticed column with diagonal lacing bar, and the error is 6.67%. In the elastic analysis of three-limbed steel tube latticed column with diagonal lacing bar, the column global stability mainly depends on the global initial geometric defects, and the member initial geometric defect is negligible. And when two kinds of defects are applied at the same time, the structural buckling load is reduced by less than 0.20% compared to the global initial geometric defects. In the elastoplastic analysis, the column global stability is determined by both the global initial geometric defect and the member initial geometric defect. When both defects are applied at the same time, the structural buckling load decreases by less than 0.65% compared to the global initial geometric defect only, and 7.60% compared to the member initial geometric defects only. It can be concluded that there is little difference in the overall stability bearing capacity between the two kinds of defects.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 2062-2067
Author(s):  
Dongdong Xu ◽  
Yuanqing Wang ◽  
Huiyong Ban ◽  
Xiaoling Liu ◽  
Ming Liu

Sign in / Sign up

Export Citation Format

Share Document