quality prediction
Recently Published Documents


TOTAL DOCUMENTS

1624
(FIVE YEARS 646)

H-INDEX

50
(FIVE YEARS 11)

Author(s):  
Jingyang Wang ◽  
Jiazheng Li ◽  
Xiaoxiao Wang ◽  
Tingting Wang ◽  
Qiuhong Sun

2022 ◽  
Vol 15 ◽  
Author(s):  
Chenxi Feng ◽  
Long Ye ◽  
Qin Zhang

This work proposes an end-to-end cross-domain feature similarity guided deep neural network for perceptual quality assessment. Our proposed blind image quality assessment approach is based on the observation that features similarity across different domains (e.g., Semantic Recognition and Quality Prediction) is well correlated with the subjective quality annotations. Such phenomenon is validated by thoroughly analyze the intrinsic interaction between an object recognition task and a quality prediction task in terms of characteristics of the human visual system. Based on the observation, we designed an explicable and self-contained cross-domain feature similarity guided BIQA framework. Experimental results on both authentical and synthetic image quality databases demonstrate the superiority of our approach, as compared to the state-of-the-art models.


2022 ◽  
Author(s):  
Zhen Zhang ◽  
Shiqing Zhang ◽  
Xiaoming Zhao ◽  
Linjian Chen ◽  
Jun Yao

Abstract The acceleration of industrialization and urbanization has recently brought about serious air pollution problems, which threaten human health and lives, the environmental safety, and sustainable social development. Air quality prediction is an effective approach for providing early warning of air pollution and supporting cleaner industrial production. However, existing approaches have suffered from a weak ability to capture long-term dependencies and complex relationships from time series PM2.5 data. To address this problem, this paper proposes a new deep learning model called temporal difference-based graph transformer networks (TDGTN) to learn long-term temporal dependencies and complex relationships from time series PM2.5 data for air quality PM2.5 prediction. The proposed TDGTN comprises of encoder and decoder layers associated with the developed graph attention mechanism. In particular, considering the similarity of different time moments and the importance of temporal difference between two adjacent moments for air quality prediction, we first construct graph-structured data from original time series PM2.5 data at different moments without explicit graph structure. Then, based on the constructed graph, we improve the self-attention mechanism with the temporal difference information, and develop a new graph attention mechanism. Finally, the developed graph attention mechanism is embedded into the encoder and decoder layers of the proposed TDGTN to learn long-term temporal dependencies and complex relationships from a graph prospective on air quality PM2.5 prediction tasks. To verify the effectiveness of the proposed method, we conduct air quality prediction experiments on two real-world datasets in China, such as Beijing PM2.5 dataset ranging from 01/01/2010 to 12/31/2014 and Taizhou PM2.5 dataset ranging from 01/01/2017 to 12/31/2019. Compared with other air quality forecasting methods, such as autoregressive moving average (ARMA), support vector regression (SVR), convolutional neural network (CNN), long short-term memory (LSTM), the original Transformer, our experiment results indicate that the proposed method achieves more accurate results on both short-term (1 hour) and long-term (6, 12, 24, 48 hours) air quality prediction tasks.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 512
Author(s):  
Luping Zhao ◽  
Xin Huang

In this paper, focusing on the slow time-varying characteristics, a series of works have been conducted to implement an accurate quality prediction for batch processes. To deal with the time-varying characteristics along the batch direction, sliding windows can be constructed. Then, the start-up process is identified and the whole process is divided into two modes according to the steady-state identification. In the most important mode, the process data matrix, used to establish the regression model of the current batch, is expanded to involve the process data of previous batches, which is called batch augmentation. Thus, the process data of previous batches, which have an important influence on the quality of the current batch, will be identified and form a new batch augmentation matrix for modeling using the partial least squares (PLS) method. Moreover, considering the multiphase characteristic, batch augmentation analysis and modeling is conducted within each phase. Finally, the proposed method is applied to a typical batch process, the injection molding process. The quality prediction results are compared with those of the traditional quality prediction method based on PLS and the ridge regression method under the proposed batch augmentation analysis framework. The conclusion is obtained that the proposed method based on the batch augmentation analysis is superior.


Sign in / Sign up

Export Citation Format

Share Document