laser ranging
Recently Published Documents


TOTAL DOCUMENTS

1300
(FIVE YEARS 272)

H-INDEX

44
(FIVE YEARS 7)

GPS Solutions ◽  
2022 ◽  
Vol 26 (2) ◽  
Author(s):  
Grzegorz Bury ◽  
Krzysztof Sośnica ◽  
Radosław Zajdel ◽  
Dariusz Strugarek

AbstractDue to the continued development of the GLONASS satellites, precise orbit determination (POD) still poses a series of challenges. This study examines the impact of introducing the analytical tube-wing model for GLONASS-M and the box-wing model for GLONASS-K in a series of hybrid POD strategies that consider both the analytical model and a series of empirical parameters. We assess the perturbing accelerations acting on GLONASS spacecraft based on the analytical model. All GLONASS satellites are equipped with laser retroreflectors for satellite laser ranging (SLR). We apply the SLR observations for the GLONASS POD in a series of GNSS + SLR combined solutions. The application of the box-wing model significantly improves GLONASS orbits, especially for GLONASS-K, reducing the STD of SLR residuals from 92.6 to 27.6 mm. Although the metadata for all GLONASS-M satellites reveal similar construction characteristics, we found differences in empirical accelerations and SLR offsets not only between GLONASS-M and GLONASS-M+ but also within the GLONASS-M+ series. Moreover, we identify satellites with inferior orbit solutions and check if we can improve them using the analytical model and SLR observations. For GLONASS-M SVN730, the STD of the SLR residuals for orbits determined using the empirical solution is 48.7 mm. The STD diminishes to 41.2 and 37.8 mm when introducing the tube-wing model and SLR observations, respectively. As a result, both the application of the SLR observations and the analytical model significantly improve the orbit solution as well as reduce systematic errors affecting orbits of GLONASS satellites.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 616
Author(s):  
Stanisław Schillak ◽  
Paweł Lejba ◽  
Piotr Michałek ◽  
Tomasz Suchodolski ◽  
Adrian Smagło ◽  
...  

This paper presents the results of an orbital analysis of satellite laser ranging data performed by the Borowiec SLR station (7811) in the period from July 1993 to December 2019, including the determination of the station positions and velocity. The analysis was performed using the GEODYN-II orbital program for the independent monthly orbital arcs from the results of the LAGEOS-1 and LAGEOS-2 satellites. Each arc was created from the results of the laser observations of a dozen or so selected stations, which were characterized by a large number of normal points and a good quality of observations. The geocentric and topocentric coordinates of the station were analyzed. Factors influencing the uncertainty of the measurements were determined: the number of the normal points, the dispersion of the normal points in relation to the orbits, and the long-term stability of the systematic deviations. The position leap at the end of 2002 and its interpretation in ITRF2014 were analyzed. The 3D stability of the determined positions throughout the period of study was equal to 12.7 mm, with the uncertainty of determination being at the level of 4.3 mm. A very high compliance of the computed velocity of the Borowiec SLR station (24.9 mm/year) with ITRF2014 (25.0 mm/year) was found.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 457
Author(s):  
Wei Zhou ◽  
Hongliang Cai ◽  
Guo Chen ◽  
Wenhai Jiao ◽  
Qianqian He ◽  
...  

Global navigation services from the quad-constellation of GPS, GLONASS, BDS, and Galileo are now available. The international GNSS monitoring and assessment system (iGMAS) aims to evaluate the navigation performance of the current quad systems under a unified framework. In order to assess impact of orbit and clock errors on the positioning accuracy, the user range error (URE) is always taken as a metric by comparison with the precise products. Compared with the solutions from a single analysis center, the combined solutions derived from multiple analysis centers are characterized with robustness and reliability and preferred to be used as references to assess the performance of broadcast ephemerides. In this paper, the combination method of iGMAS orbit and clock products is described, and the performance of the combined solutions is evaluated by various means. There are different internal precisions of the combined orbit and clock for different constellations, which indicates that consistent weights should be assigned for individual constellations and analysis centers included in the combination. For BDS-3, Galileo, and GLONASS combined orbits of iGMAS, the root-mean-square error (RMSE) of 5 cm is achieved by satellite laser ranging (SLR) observations. Meanwhile, the SLR residuals are characterized with a linear pattern with respect to the position of the sun, which indicates that the solar radiation pressure (SRP) model adopted in precise orbit determination needs further improvement. The consistency between combined orbit and clock of quad-constellation is validated by precise point positioning (PPP), and the accuracies of simulated kinematic tests are 1.4, 1.2, and 2.9 cm for east, north, and up components, respectively.


2021 ◽  
Vol 14 (1) ◽  
pp. 129
Author(s):  
Jiaqi Yao ◽  
Xinming Tang ◽  
Guoyuan Li ◽  
Jiyi Chen ◽  
Zhiqiang Zuo ◽  
...  

Satellite laser altimetry can obtain sub-meter or even centimeter-scale surface elevation data over large areas, but it is inevitably affected by scattering caused by clouds, aerosols, and other atmospheric particles. This laser ranging error caused by scattering cannot be ignored. In this study, we systematically combined existing atmospheric scattering identification technology used in satellite laser altimetry and observed that the traditional algorithm cannot effectively estimate the laser multiple scattering of the GaoFen-7 (GF-7) satellite. To solve this problem, we used data from the GF-7 satellite to analyze the importance of atmospheric scattering and propose an identification scheme for atmospheric scattering data over land and water areas. We also used a look-up table and a multi-layer perceptron (MLP) model to identify and correct atmospheric scattering, for which the availability of land and water data reached 16.67% and 26.09%, respectively. After correction using the MLP model, the availability of land and water data increased to 21% and 30%, respectively. These corrections mitigated the low identification accuracy due to atmospheric scattering, which is significant for facilitating satellite laser altimetry data processing.


2021 ◽  
Author(s):  
Erricos Pavlis ◽  
Vincenza Luceri ◽  
Antonio Basoni ◽  
David Sarrocco ◽  
Magda Kuzmicz-Cieslak ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (22) ◽  
pp. 4634
Author(s):  
Enzhe Tao ◽  
Nannan Guo ◽  
Kexin Xu ◽  
Bin Wang ◽  
Xuhua Zhou

Satellite laser ranging (SLR) observations provide an independent validation of the global navigation satellite system (GNSS) orbits derived using microwave measurements. SLR residuals have also proven to be an important indicator of orbit radial accuracy. In this study, SLR validation is conducted for the precise orbits of eight Galileo satellites covering four to eight years (the current longest span), provided by multiple analysis centers (ACs) participating in the multi-GNSS experiment (MGEX). The purpose of this long-term analysis (the longest such study to date), is to provide a comprehensive evaluation of orbit product quality, its influencing factors, and the effect of perturbation model updates on precise orbit determination (POD) processing. A conventional ECOM solar radiation pressure (SRP) model was used for POD. The results showed distinct periodic variations with angular arguments in the SRP model, implying certain defects in the ECOM system. Updated SRP descriptions, such as ECOM2 or the Box-Wing model, led to significant improvements in SLR residuals for orbital products from multiple ACs. The standard deviation of these residuals decreased from 8–10 cm, before the SRP update, to about 3 cm afterward. The systematic bias of the residuals was also reduced by 2–4 cm and the apparent variability decreased significantly. In addition, the effects of gradual SRP model updates in the POD were evident in orbit comparisons. Orbital differences between ACs in the radial direction were reduced from the initial 10 cm to better than 3 cm, which is consistent with the results of SLR residual analysis. These results suggest SLR validation to be a powerful technique for evaluating the quality of POD strategies in GNSS orbits. Furthermore, this study has demonstrated that perturbation models, such as SRP, provide a better orbit modeling for the Galileo satellites.


2021 ◽  
pp. 13-35
Author(s):  
E. I. Starovoitov ◽  
D. V. Savchuk

To perform rendezvous and docking of spacecraft (SC), it is necessary to detect and measure the coordinates of a passive space vehicle (SV) using the onboard aids of an active SV. For this purpose, in addition to radio engineering systems, laser-ranging systems (LRS) are used. A designing process of the onboard LRS for promising spacecraft is currently becoming more complicated and requires taking into account a lot of factors.The authors have developed the PC software to assess capabilities of onboard pulse LRS of spacecraft when working on the nearby or distant space objects that have a diffusely scattering surface, as well as are equipped with the corner reflectors. The software also allows us to calculate the LRS parameters, which, according to GOST R 50723-94, ensure eye-safety in the spectral range of 0.81 ... 1.5 microns in case of accidental irradiation.The energy of the intensifier pulse and the divergence of a sensing beam determine the LRS range and the distance of eye-safe observation, which are the most important indicators to characterize the onboard LRS capabilities. To ensure the best LRS range and safety characteristics simultaneously, it is necessary to solve the problem of multi-criteria optimization.The paper solves the problem of multi-criteria optimization for the maximum LRS range and the eye-safe observation distance by Pareto sets the use of which allows us to avoid uncertainty in choosing a significance of criteria.The results obtained show that the proposed methods can be successfully applied in designing onboard LRS of spacecraft.


Sign in / Sign up

Export Citation Format

Share Document