canonical wnt
Recently Published Documents


TOTAL DOCUMENTS

1999
(FIVE YEARS 509)

H-INDEX

109
(FIVE YEARS 15)

2022 ◽  
Vol 16 ◽  
pp. 101326
Author(s):  
Haissa O. Brito ◽  
José de Ribamar Rodrigues Calixto ◽  
Rui Medeiros ◽  
Rui M. Gil da Costa

2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Hongjuan You ◽  
Qi Li ◽  
Delong Kong ◽  
Xiangye Liu ◽  
Fanyun Kong ◽  
...  

AbstractCanonical Wnt/β-catenin signaling is a complex cell-communication mechanism that has a central role in the progression of various cancers. The cellular factors that participate in the regulation of this signaling are still not fully elucidated. Lysine acetylation is a significant protein modification which facilitates reversible regulation of the target protein function dependent on the activity of lysine acetyltransferases (KATs) and the catalytic function of lysine deacetylases (KDACs). Protein lysine acetylation has been classified into histone acetylation and non-histone protein acetylation. Histone acetylation is a kind of epigenetic modification, and it can modulate the transcription of important biological molecules in Wnt/β-catenin signaling. Additionally, as a type of post-translational modification, non-histone acetylation directly alters the function of the core molecules in Wnt/β-catenin signaling. Conversely, this signaling can regulate the expression and function of target molecules based on histone or non-histone protein acetylation. To date, various inhibitors targeting KATs and KDACs have been discovered, and some of these inhibitors exert their anti-tumor activity via blocking Wnt/β-catenin signaling. Here, we discuss the available evidence in understanding the complicated interaction of protein lysine acetylation with Wnt/β-catenin signaling, and lysine acetylation as a new target for cancer therapy via controlling this signaling.


2022 ◽  
Author(s):  
Nydia Tejeda-Munoz ◽  
Marco Morselli ◽  
Yuki Moriyama ◽  
Pooja Sheladiya ◽  
Matteo Pellegrini ◽  
...  

During canonical Wnt signaling, the Lrp6 and Frizzled co-receptors bind to the Wnt growth factor and the complex is endocytosed and sequestered together with Glycogen Synthase Kinase 3 (GSK3), Dishevelled (Dvl), and Axin inside the intraluminal vesicles of late endosomes, known as multivesicular bodies (MVBs). Here we present experiments showing that Wnt causes the endocytosis of focal adhesion (FA) proteins and depletion of Integrin β 1 (ITGβ1) from the cell surface. FAs and integrins link the cytoskeleton to the extracellular matrix. Wnt-induced endocytosis caused ITGβ1 depletion from the plasma membrane and was accompanied by striking changes in the actin cytoskeleton. In situ protease protection assays in cultured cells showed that ITGβ1 was sequestered within membrane-bounded organelles that corresponded to Wnt-induced MVBs containing GSK3 and FA-associated proteins. An in vivo model using Xenopus embryos dorsalized by Wnt8 mRNA showed that ITGβ1 depletion decreased Wnt signaling. The finding of a crosstalk between two mayor signaling pathways, canonical Wnt and focal adhesions, should be relevant to human cancer and cell biology.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ilyas Chachoua ◽  
Ilias Tzelepis ◽  
Hao Dai ◽  
Jia Pei Lim ◽  
Anna Lewandowska-Ronnegren ◽  
...  

AbstractAbnormal WNT signaling increases MYC expression in colon cancer cells in part via oncogenic super-enhancer-(OSE)-mediated gating of the active MYC to the nuclear pore in a poorly understood process. We show here that the principal tenet of the WNT-regulated MYC gating, facilitating nuclear export of the MYC mRNA, is regulated by a CTCF binding site (CTCFBS) within the OSE to confer growth advantage in HCT-116 cells. To achieve this, the CTCFBS directs the WNT-dependent trafficking of the OSE to the nuclear pore from intra-nucleoplasmic positions in a stepwise manner. Once the OSE reaches a peripheral position, which is triggered by a CTCFBS-mediated CCAT1 eRNA activation, its final stretch (≤0.7 μm) to the nuclear pore requires the recruitment of AHCTF1, a key nucleoporin, to the CTCFBS. Thus, a WNT/ß-catenin-AHCTF1-CTCF-eRNA circuit enables the OSE to promote pathological cell growth by coordinating the trafficking of the active MYC gene within the 3D nuclear architecture.


2022 ◽  
Author(s):  
Elizabeth S Van Itallie ◽  
Christine M Field ◽  
Timothy J Mitchison ◽  
Marc W Kirschner

Wnt11 family proteins are ligands that activate a type of Dishevelled-mediated, non-canonical Wnt signaling pathway. Loss of function causes defects in gastrulation and/or anterior-posterior axis extension in all vertebrates. Non-mammalian vertebrate genomes encode two Wnt11 family proteins whose distinct functions have been unclear. We knocked down zygotic Wnt11b and Wnt11, separately and together, in Xenopus laevis. Single morphants exhibited very similar phenotypes of delayed blastopore closure, but they had different phenotypes at the tailbud stage. In response to their very similar gastrulation phenotypes, we chose to characterize dual morphants. Using dark field illuminated time-lapse imaging and kymograph analysis, we identified a failure of dorsal blastopore lip maturation that correlated with slower blastopore closure and failure to internalize the endoderm at the dorsal blastopore lip. We connected these externally visible phenotypes to cellular events in the internal tissues – including the archenteron – by imaging intact embryos stained for anillin and microtubules. The cleavage furrow protein anillin provided an exceptional cytological marker for blastopore lip and archenteron morphogenesis and the consequent disruption through loss of Wnt11 signaling. These cytological changes suggest a novel role for the regulation of contractility and stiffness of the epithelial cells that result in dramatic shape changes and are important in gastrulation.


2022 ◽  
Vol 15 (1) ◽  
pp. 101267
Author(s):  
Isabelle Ariane Bley ◽  
Anabel Zwick ◽  
Muriel Charlotte Hans ◽  
Katrin Thieser ◽  
Viktoria Wagner ◽  
...  

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 80
Author(s):  
Yentl Huybrechts ◽  
Eveline Boudin ◽  
Gretl Hendrickx ◽  
Ellen Steenackers ◽  
Neveen Hamdy ◽  
...  

Sclerosteosis is a high bone mass disorder, caused by pathogenic variants in the genes encoding sclerostin or LRP4. Both proteins form a complex that strongly inhibits canonical WNT signaling activity, a pathway of major importance in bone formation. So far, all reported disease-causing variants are located in the third β-propeller domain of LRP4, which is essential for the interaction with sclerostin. Here, we report the identification of two compound heterozygous variants, a known p.Arg1170Gln and a novel p.Arg632His variant, in a patient with a sclerosteosis phenotype. Interestingly, the novel variant is located in the first β-propeller domain, which is known to be indispensable for the interaction with agrin. However, using luciferase reporter assays, we demonstrated that both the p.Arg1170Gln and the p.Arg632His variant in LRP4 reduced the inhibitory capacity of sclerostin on canonical WNT signaling activity. In conclusion, this study is the first to demonstrate that a pathogenic variant in the first β-propeller domain of LRP4 can contribute to the development of sclerosteosis, which broadens the mutational spectrum of the disorder.


Author(s):  
Jingye Zuo ◽  
Yajie Tong ◽  
Yuting Yang ◽  
Yirui Wang ◽  
Dongmei Yue

Background: Bronchopulmonary dysplasia (BPD) is characterized by impaired alveolar and microvascular development. Claudin-18 is the only known lung-specific tight junction protein affecting alveolar epithelium development and transdifferentiation. Objective: To explore the changes in claudin-18 expression, alveolar epithelial cell (AEC) marker proteins, the canonical Wnt pathway, and their possible regulatory relationships in a hyperoxia-induced BPD rat model. Methods: The BPD neonatal rat model was established by exposure to hyperoxia (85%). Hematoxylin and eosin (HE) staining was used to confirm the establishment of the BPD model. The mRNA levels were assessed using quantitative real-time polymerase chain reaction, while protein expression levels were determined using western blotting, immunohistochemical staining, and immunofluorescence . Results: As confirmed by HE staining, the BPD neonatal rat model was successfully established. Compared with the air group, claudin-18 and claudin-4 expression decreased in the hyperoxia group. The expression of β-catenin of the Wnt signaling decreased, whereas that of p-GSK-3β increased. Expression of the AEC Ⅱ marker SFTPC decreased initially and then increased, whereas that of the AEC Ⅰ marker Podoplanin increased on day 14 (P < 0.05). Conclusions: Claudin-18 downregulation during hyperoxia may affect lung development and maturation, which may result in hyperoxia-induced BPD. Additionally, claudin-18 is associated with the canonical Wnt pathway and alveolar epithelial transdifferentiation.


2021 ◽  
Author(s):  
Susanne C. Baess ◽  
Annika Graband ◽  
Kristin Sere ◽  
Martin Zenke ◽  
Catherin Niemann ◽  
...  

The barrier-forming, self-renewing mammalian epidermis comprises keratinocytes, pigment-producing melanocytes, and resident immune cells as first-line host defense. In murine tail skin, interfollicular epidermis patterns into pigmented ′scale′ and non-pigmented ′interscale′ epidermis. Why and how mature melanocytes confine to scale epidermis is unresolved. Here, we delineate a cellular hierarchy among epidermal cell types that determines skin patterning. Already during postnatal development, melanocytes co-segregate with newly forming scale compartments. Intriguingly, this process coincides with partitioning of both Langerhans cells and dendritic epidermal T-cells to interscale epidermis, suggesting functional segregation of pigmentation and immune surveillance. Analysis of non-pigmented mice and of mice lacking melanocytes or resident immune cells revealed that immunocyte patterning is melanocyte- and melanin-independent, and, vice versa, immune cells do not control melanocyte localization. Instead, genetically enforced progressive scale fusion upon Lrig1 deletion showed that melanocytes and immune cells dynamically follow epithelial scale:interscale patterns. Importantly, disrupting Wnt-Lef1 function in keratinocytes caused melanocyte mislocalization to interscale epidermis, implicating canonical Wnt signaling in organizing the pigmentation pattern. Together, this work uncovered cellular and molecular principles underlying the compartmentalization of tissue functions in skin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Sirakov ◽  
Leo Claret ◽  
Michelina Plateroti

A pivotal role of thyroid hormones and their nuclear receptors in intestinal development and homeostasis have been described, whereas their involvement in intestinal carcinogenesis is still controversial. In this perspective article we briefly summarize the recent advances in this field and present new data regarding their functional interaction with one of the most important signaling pathway, such as WNT, regulating intestinal development and carcinogenesis. These complex interactions unveil new concepts and will surely be of importance for translational research.


Sign in / Sign up

Export Citation Format

Share Document