solute redistribution
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 2)

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1497
Author(s):  
Kai Liu ◽  
Shusen Cheng ◽  
Jipeng Li ◽  
Yongping Feng

Medium-high carbon steels having a high quality are widely used in China. It is advantageous to produce high value-added hot-rolled plates with the crystal refined and chemical composition homogenized in the casting slabs. However, element segregation occurs easily during high-medium carbon steels’ production. Generally, the centerline segregation is improved by enlarging the equiaxed zone with low-superheat casting and electromagnetic stirring (EMS). Studies were conducted on centerline segregation of S50C steel slabs with a thickness of 52 mm produced by the compact strip production (CSP) process in China without EMS equipped. By sampling along the width at different position, the secondary dendrite arm spacing (SDAS) was measured after etching and picture processing, based on which the cooling rate was calculated. It was found that the cooling rate increased from the center to the surfaces of the slabs ranging in 1~20 K/s, 10 times faster than that of a conventional process. The faster cooling rate led to a refined solidifying structure and columnar dendrite through the center of the slabs. The SDAS tended to increase from surfaces to the center, ranging only 32~120 μm smaller than that of a conventional process in 100~300 μm, indicating a finer solidifying structure by the CSP process. Results by EPMA indicated that elements C, Si, and Mn distribute in dispersed spots, increasing towards the center, and the centerline segregation changed in a narrow range: for C mainly in 1.0~1.1, Si in 0.98~1.08, Mn in 0.96~1.02, respectively, meaning a more chemical homogenization than that of thick slabs. Elements’ segregation originated from solute redistribution between solid and liquid. According to thermodynamic calculation, δ region of S50C is so narrow that the solute redistribution mainly occurred between γ-Fe and liquid during solidification. As the equilibrium partition coefficient of element C was the smallest, it was easy for C to be rejected to the residual liquid in the inter-dendritic space, leading to obvious segregation, relatively. Besides, as a result of high-cooling intensity, the solidifying structure became so fine that the Fourier number increased and the volume of the residual liquid decreased, making centerline segregation alleviated effectively both in volume and degree. Although bulging was observed during the industrial experiment, the centerline segregation was still inhibited obviously as the refining solidifying structure with permeability ranged only in 0.1~2.3 μm2 from the surfaces to centerline, which showed a good resistance on the residual flow towards the centerline.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1525
Author(s):  
Yi-Long Xiong ◽  
Jun Shen ◽  
Yu-Jun Du

Two different analytic models, in which convection in the float zone is assumed, are developed to understand the solute redistributions during general seeding and quasi-seeding processes of TiAl alloys, respectively. The results suggest that the solute redistribution plays an important effect in the phase selection and microstructural development during the initial stage of seeding processes. In the initial stage of the quasi-seeding process, the interface concentration increases gradually and the solute diffusion boundary forms with the crystal growth of α phase. Correspondingly, a maximum constitutional undercooling with respect to β phase occurs ahead of the solidifying α interface and then decreases gradually. Simultaneously, the position where the maximum constitutional undercooling occurs also moves forward with regard to the interface. While in the initial stage of the general seeding process, the α phase can grow continuously as stable phase when the initial composition of the melt is higher than Al 48.9%. Under the influence of both the constitutional undercooling and Ti5Si3 particles, coarse dendrites form and then are transformed to cellular morphology. Nevertheless, the lamellar microstructure can still be aligned well during the entire seeding process. Besides, it is also found that the thickness of solute diffusion boundary decreases with the increase of convection intensity and thus, the growing interface become more stably correspondingly, which is beneficial to the lamellar alignment of TiAl alloys.


2021 ◽  
Vol 194 ◽  
pp. 113663
Author(s):  
Sylvain Dépinoy ◽  
Mohamed Sennour ◽  
Lyliat Ferhat ◽  
Christophe Colin

Sign in / Sign up

Export Citation Format

Share Document