tile drainage
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 52)

H-INDEX

34
(FIVE YEARS 5)

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 187
Author(s):  
Nicolás Velásquez ◽  
Ricardo Mantilla ◽  
Witold Krajewski ◽  
Morgan Fonley ◽  
Felipe Quintero

This study evaluates the potential for a newly proposed non-linear subsurface flux equation to improve the performance of the hydrological Hillslope Link Model (HLM). The equation contains parameters that are functionally related to the hillslope steepness and the presence of tile drainage. As a result, the equation provides better representation of hydrograph recession curves, hydrograph timing, and total runoff volume. The authors explore the new parameterization’s potential by comparing a set of diagnostic and prognostic setups in HLM. In the diagnostic approach, they configure 12 different scenarios with spatially uniform parameters over the state of Iowa. In the prognostic case, they use information from topographical maps and known locations of tile drainage to distribute parameter values. To assess performance improvements, they compare simulation results to streamflow observations during a 17-year period (2002–2018) at 140 U.S. Geological Survey (USGS) gauging stations. The operational setup of the HLM model used at the Iowa Flood Center (IFC) serves as a benchmark to quantify the overall improvement of the model. In particular, the new equation provides better representation of recession curves and the total streamflow volumes. However, when comparing the diagnostic and prognostic setups, the authors found discrepancies in the spatial distribution of hillslope scale parameters. The results suggest that more work is required when using maps of physical attributes to parameterize hydrological models. The findings also demonstrate that the diagnostic approach is a useful strategy to evaluate models and assess changes in their formulations.


2021 ◽  
Vol 3 ◽  
Author(s):  
Samuel A. Miller ◽  
Steve W. Lyon

Artificial subsurface (tile) drainage is used in many agricultural areas where soils have naturally poor drainage to increase crop yield and field trafficability. Studies at the field scale indicate that tile drains disproportionately export large soluble reactive phosphorus (SRP) and nitrate loads to downstream waterbodies relative to other surface and subsurface runoff pathways, but knowledge gaps remain understanding the impact of tile drainage to nutrient export at watershed scales. The Western Lake Erie Basin is susceptible to summertime eutrophic conditions driven by non-point source nutrient pollution due to a shallow mean water depth and land use dominated by agriculture. The purpose of this study is to analyze the impact of tile drainage on downstream discharge, nutrient concentrations, and nutrient loads for 16 watersheds that drain to the Western Lake Erie Basin. Daily discharge and nutrient concentrations were summarized annually and during the main nutrient loading period (March–July) for 2 years representing normal nutrient loading period precipitation (2018) and above normal precipitation (2019). Results indicate positive correlations between watershed tile drainage percentage and runoff metrics during 2019, but no relationship during 2018. Additionally, SRP concentration and load were positively correlated to watershed tile drainage percentage in 2019, but not in 2018. Watershed tile drainage percentage was correlated with nitrate concentration and load for both years. The SRP concentration-discharge relationships suggested relatively weak, chemodynamic behavior, implying a slight enriching effect where SRP concentrations were greater at higher stream discharge conditions during both years. In contrast, nitrate concentration-discharge relationships suggested strong, enriching chemodynamic behavior during 2018, but chemostatic behavior during 2019. The difference in SRP and nitrate export patterns in the 2 years analyzed highlights the importance of implementing appropriate best management practices that target specific nutrients and treat primary delivery pathways to effectively improve downstream aquatic health conditions.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2883
Author(s):  
Rasa Vismontienė ◽  
Arvydas Povilaitis

Biochar has received increased attention in environmental applications in recent years. Therefore, three pilot-scale denitrifying bioreactors, one filled with woodchips only and the other two enriched with 10% and 20% by volume of biochar from deciduous wood, were tested under field conditions for the removal of nitrate (NO3-N) and phosphate (PO4-P) from tile drainage water in Lithuania over a 3-year period. The experiment showed the possibility to improve NO3-N removal by incorporating 20% biochar into woodchips. Compared to the woodchips only and woodchips amended with 10% biochar, the NO3-N removal effect was particularly higher at temperatures below 10.0 °C. The results also revealed that woodchips alone can be a suitable medium for PO4-P removal, while the amendment of biochar to woodchips (regardless of 10% or 20%) can lead to large releases of PO4-P and other elements. Due to the potential adverse effects, the use of biochar in woodchip bioreactors has proven to be very limited and complicated. The experiment highlighted the need to determine the retention capacity of biochar for relevant substances depending on the feedstock and its physical and chemical properties before using it in denitrifying bioreactors.


2021 ◽  
Author(s):  
Prasanth Valayamkunnath ◽  
David J Gochis ◽  
Fei Chen ◽  
Micheal Barlage ◽  
Kristie J. Franz

2021 ◽  
Author(s):  
Jan Vopravil ◽  
Pavel Formánek ◽  
Jaroslava Janků ◽  
Tomáš Khel

Tile drainage belongs to one of the most important meliorative measures in the Czech Republic. It has been hypothesised that it may improve some soil properties which are influenced by the groundwater and their water regime. In the case of meadows, the used management method may also influence the soil properties. In this study, different physical soil properties (particle and bulk density, total soil porosity, maximum capillary water capacity, minimum air capacity, water retention capacity and saturated water content, volumetric water content and matric potential) at depths of 15, 35 or 40 and 60 cm in differently managed meadows (drained versus undrained) located near the village of Železná in the Czech Republic (mildly cold, humid climatic region) were investigated. The drained meadow is used mainly for grazing (extensively) and the undrained meadow is mown twice a year. In addition, the actual evapotranspiration was estimated for the 2018 vegetation season. The selected physical soil properties were significantly (P < 0.05) different between the experimental meadows, especially at depths of 0–28 versus 0–35 cm (particle and bulk density, total soil porosity, maximum capillary water capacity, water retention capacity and saturated water content) and 28–49 versus 35–45 cm (particle density, water retention capacity and saturated water content). In the case of all the studied soil depths, the volumetric water content and matric potential were significantly (P < 0.05) different between the experimental meadows in the years 2016–2019. The actual evapotranspiration was also significantly different (P < 0.05) between the meadows. The obtained differences in the measured soil properties and estimated actual evapotranspiration were probably influenced by the used tile drainage and also by the type of management of the meadow. It is necessary to obtain more research findings with respect to different types of management in the case of drained meadows and also undrained meadows to understand the role of both treatments (tile drainage, management).


2021 ◽  
Vol 36 ◽  
pp. 100839
Author(s):  
Saghar K. Motarjemi ◽  
Anders Bjørn Møller ◽  
Finn Plauborg ◽  
Bo V. Iversen

Sign in / Sign up

Export Citation Format

Share Document