peak shear strength
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 34)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 1200 (1) ◽  
pp. 012030
Author(s):  
Tigo Mindiastiwi ◽  
Po-Kai Wu ◽  
Agus Bambang Siswanto ◽  
Mukhamad Afif Salim

Abstract Laboratory triaxial compression tests were carried out to investigate the mechanical behavior of dense sand and geogrid-reinforced granular soils. The tested sand having its mean particle size (D50) equal to 0.6 mm was adopted. Three geogrids with different longitudinal and transverse nominal strengths were used. The dimensions of the cylindrical soil specimen were 70 mm (diameter) × 160 mm (height). The relative density was equal to 70% for all tests. The reinforced sand specimens with one or two geogrid layers were sheared under effective confining pressures (σ′3) equal to 50 kPa. The test results of unreinforced sand indicate the general stress-strain behavior of dense sand when sheared, whereas the deviatoric stress reaches its peak value, after which it gradually decreases to ultimate value (σ1 - σ3)ult. The difference of effective confining pressure indicates that the peak of deviatoric stress Δσd = (σ1 - σ3) increases with the increase in effective confining pressure (σ′3), while the peak principal stress ratio (σ′1/σ′3) decreases with the increase (σ′3). The friction angle (ϕ′)and cohesion (c′), defined by analytical and graphical methods for unreinforced sand. Geogrid as reinforcement increasing peak shear strength. The increasing peak shear strength is more pronounced with a higher number of geogrid and the geogrid with higher stiffness. Increased in confining stress inside reinforced soil mass (Δσ3R) can be interpreted by cohesive reinforced soil (CR).


Author(s):  
Zhiming Chao ◽  
Gary Fowmes ◽  
S. M. Dassanayake

AbstractPeak shear strength of soil-Geocomposite Drain Layer (GDL) interfaces is an important parameter in the designing and operating related engineering structures. In this paper, a database compiled from 316 large direct shear tests on soil-GDL interfaces has been established. Based on this database, five different machine learning models: Back Propagation Artificial Neural Network (BPANN) and Support Vector Machine (SVM), with hyperparameters optimised by Particle Swarm Optimisation Algorithm (PSO) and Genetic Algorithm (GA), respectively, and Extreme Learning Machine (ELM) optimised by Exhaustive Method, were adopt to assess the peak shear strength of soil-GDL interfaces. Then, a comprehensive investigation and comparison of the predictive performance for the models was conducted. Also, based on the selected optimal machine learning model, sensitivity analysis was conducted, and an empirical equation developed based on it. The research indicated that GA and PSO could significantly increase forecasting precision in a small number of iterations. The BPANN model optimised by PSO has the highest forecasting precision based on the statistics criteria: Root-Mean-Square Error, Correlation Coefficient, Coefficient of Determination, Wilmot’s Index of Agreement, and Mean Absolute Percentage Error. The normal stress has the biggest impact on the peak shear strength, followed by drainage core type, moisture saturation of the soil layer, shearing surface, soil type, consolidation condition, geotextile specification, soil density and drainage core thickness, and the ranking is affected partly by the data distribution of input parameters in the database based on mechanism analysis. An empirical equation developed from the optimal model was proposed to estimate the peak shear strength, which provides convenience for geotechnical engineering personnel with limited knowledge of machine learning technique.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Nai-Zhong Xu ◽  
Chang-Qing Liu ◽  
You-Jian Wang ◽  
Hong-Bin Dang

A biaxial shear test is performed on prefabricated, single-fissure type, cubic rock-like specimens by using the TZW-500 rock direct shear apparatus to study the shear strength characteristics, crack coalescence, and propagation modes of the specimens with different geometric parameters. Results show that the crack coalescence and propagation modes of the rock-like specimens with prefabricated fissures can be divided into four types, namely, single main shear crack coalescence mode, main shear crack coalescence and secondary tensile-shear crack propagation mode, main shear crack coalescence and secondary shear crack propagation mode, and main shear crack coalescence and secondary tensile crack propagation mode. All modes are affected by the dip angle α and length l of the prefabricated fissure. When the dip angle of the prefabricated fissure is α∈[0°, 20°) or (70°, 90°], the cracks center on shear failure, and most shear cracks propagate along one end of the prefabricated fissure. At α∈(30°, 50°), the cracks bear the tensile-shear combined action, and the shear cracks propagate along the two ends of the prefabricated fissure. The peak shear strength of the rock-like specimens with prefabricated fissures is also closely related to the dip angle α and length l of the fissure. With the increase in dip angle α of the prefabricated fissure, the peak shear strength of each rock-like specimen decreases initially then increases, and the peak shear strength curve presents a similar “U” shape. At α∈[30°, 60°], the peak shear strength is within the peak-valley interval. When the length l of the prefabricated fissure is increased, the peak shear strength experiences a gradual reduction. When l > 20 mm, the peak shear strength is greatly influenced by l, but the influence is minimal when l ≥ 20 mm. At the same dip angle α and fissure length of l ≥ 20 mm, the correlation between peak shear strength and fissure width b is low.


2021 ◽  
Vol 29 (2) ◽  
pp. 49-54
Author(s):  
Pavel Koudela ◽  
Juraj Chalmovský ◽  
Lumír Miča

Abstract The reinforcement of soil is used to improve its strength and stiffness. The standard method of soil reinforcement is an application of geosynthetics. Soil reinforcement by distributed discrete fibres represents an alternative to those techniques. Currently used fibres have a straight shape, uniform cross-section, and smooth surface, which is not optimal in terms of the fibre-soil interaction. In this study, fibres with a variable shape were utilized. The fibres were fabricated using a fused deposition modelling technology. Firstly, a brief theoretical background is presented. Then, the proposed shapes of the fibres and their manufacturing process are described. The mechanical properties of the soil-fibre composite were investigated through consolidated drained triaxial tests. Well-graded coarse sand and poorly-graded fine sand were used. A higher peak shear strength was observed in the case of fibres with a variable shape. The effect of the variable shape of the fibres on the peak shear strength was higher in the case of the coarse sand.


2021 ◽  
Vol 21 (6) ◽  
pp. 04021085
Author(s):  
Man Huang ◽  
Chenjie Hong ◽  
Jie Chen ◽  
Chengrong Ma ◽  
Changhong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document