leading order
Recently Published Documents


TOTAL DOCUMENTS

2519
(FIVE YEARS 502)

H-INDEX

111
(FIVE YEARS 9)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Höche ◽  
Stephen Mrenna ◽  
Shay Payne ◽  
Christian Tobias Preuss ◽  
Peter Skands

We discuss and illustrate the properties of several parton-shower algorithms available in Pythia and Vincia, in the context of Higgs production via vector boson fusion (VBF). In particular, the distinctive colour topology of VBF processes allows to define observables sensitive to the coherent radiation pattern of additional jets. We study a set of such observables, using the Vincia sector-antenna shower as our main reference, and contrast it to Pythia's transverse-momentum-ordered DGLAP shower as well as Pythia's dipole-improved shower. We then investigate the robustness of these predictions as successive levels of higher-order perturbative matrix elements are incorporated, including next-to-leading-order matched and tree-level merged calculations, using Powheg Box and Sherpa respectively to generate the hard events.


2022 ◽  
Vol 63 (1) ◽  
Author(s):  
Ch. Elster ◽  
M. Burrows ◽  
R. B. Baker ◽  
S. P. Weppner ◽  
K. D. Launey ◽  
...  

2022 ◽  
Author(s):  
Henri Drake ◽  
Xiaozhou Ruan ◽  
Raffaele Ferrari

Small-scale mixing drives the diabatic upwelling that closes the abyssal ocean overturning circulation. Measurements of in-situ turbulence reveal that mixing is bottom-enhanced over rough topography, implying downwelling in the interior and stronger upwelling in a sloping bottom boundary layer. However, in-situ mixing estimates are indirect and the inferred vertical velocities have not yet been confirmed. Purposeful releases of inert tracers, and their subsequent spreading, have been used to independently infer turbulent diffusivities; however, these Tracer Release Experiments (TREs) provide estimates in excess of in-situ ones. In an attempt to reconcile these differences, Ruan and Ferrari (2021) derived exact buoyancy moment diagnostics, which we here apply to quasi-realistic simulations. We show in a numerical simulation that tracer-averaged diapycnal motion is directly driven by the tracer-averaged buoyancy velocity, a convolution of the asymmetric upwelling/downwelling dipole. Diapycnal spreading, however, involves both the expected contribution from the tracer-averaged in-situ diffusion and an additional non-linear diapycnal stretching term. These diapycnal stretching effects, caused by correlations between buoyancy and the buoyancy velocity, can either enhance or reduce tracer spreading. Diapycnal stretching in the stratified interior is compensated by diapycnal contraction near the bottom; for simulations of the Brazil Basin Tracer Release Experiment these nearly cancel by coincidence. By contrast, a numerical tracer released near the bottom experiences leading-order stretching that varies in time. These results suggest mixing estimates from TREs are not unambiguous, especially near topography, and that more attention should be paid towards the evolution of tracers' first moments.


2022 ◽  
Vol 258 ◽  
pp. 06007
Author(s):  
Alex Gnech ◽  
Jordy de Vries ◽  
Sachin Shain ◽  
Michele Viviani

CP-violating interactions at quark level generate CP-violating nuclear interactions and currents, which could be revealed by looking at the presence of a permanent nuclear electric dipole moment. Within the framework of chiral effective field theory, we discuss the derivation of the CP-violating nuclear potential up to next-to-next-to leading order (N2LO) and the preliminary results for the charge operator up to next-to leading order (NLO). Moreover, we introduce some renormalization argument which indicates that we need to promote the short-distance operator to the leading order (LO) in order to reabsorb the divergences generated by the one pion exchange. Finally, we present some selected numerical results for the electric dipole moments of 2H, 3He and 3H discussing the systematic errors introduced by the truncation of the chiral expansion.


2022 ◽  
Vol 258 ◽  
pp. 10006
Author(s):  
Juan L. Mañes ◽  
Eugenio Megías ◽  
Manuel Valle ◽  
Miguel Á. Vázquez-Mozo

We study the constitutive relations of a chiral hadronic fluid in presence of non-Abelian’t Hooft anomalies. Analytical expressions for the covariant currents are obtained at first order in derivatives in the chiral symmetric phase, for both two and three quark flavors in the presence of chiral imbalance. We also investigate the constitutive relations after chiral symmetry breaking at the leading order.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Paolo Nason ◽  
Gavin P. Salam

Abstract We propose a new approach for combining next-to-leading order (NLO) and parton shower (PS) calculations so as to obtain three core features: (a) applicability to general showers, as with the MC@NLO and POWHEG methods; (b) positive-weight events, as with the KrkNLO and POWHEG methods; and (c) all showering attributed to the parton shower code, as with the MC@NLO and KrkNLO methods. This is achieved by using multiplicative matching in phase space regions where the shower overestimates the matrix element and accumulative (additive) matching in regions where the shower underestimates the matrix element, an approach that can be viewed as a combination of the MC@NLO and KrkNLO methods.


2022 ◽  
Vol 258 ◽  
pp. 05004
Author(s):  
Tyler Gorda

The propagation of long-wavelength gluons through a dense QCD medium at high baryon chemical potential μB is qualitatively modified by the effects of screening, arising from scatterings off the high-momentum quarks in the medium. This same screening phenomenon also impacts gluons occurring in loop corrections to the pressure of cold quark matter, leading to contributions from the parametric scale αs1/2μB, starting at next-to-next-to-leading order (N2LO) in the strong coupling constant αs. At next-to-next-to-next-to-leading order (N3LO), interactions between these long-wavelength gluonic modes contribute to the pressure. These interaction corrections have recently been computed in Ref [1, 2], and the inclusion of these interactions slightly improves the convergence of the equation of state of cold quark matter. In these proceedings, we present these results and provide details summarizing how this lengthy calculation was performed.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Gustav Uhre Jakobsen ◽  
Gustav Mogull ◽  
Jan Plefka ◽  
Jan Steinhoff

Abstract Picture yourself in the wave zone of a gravitational scattering event of two massive, spinning compact bodies (black holes, neutron stars or stars). We show that this system of genuine astrophysical interest enjoys a hidden $$ \mathcal{N} $$ N = 2 supersymmetry, at least to the order of spin-squared (quadrupole) interactions in arbitrary D spacetime dimensions. Using the $$ \mathcal{N} $$ N = 2 supersymmetric worldline action, augmented by finite-size corrections for the non-Kerr black hole case, we build a quadratic-in-spin extension to the worldline quantum field theory (WQFT) formalism introduced in our previous work, and calculate the two bodies’ deflection and spin kick to sub-leading order in the post-Minkowskian expansion in Newton’s constant G. For spins aligned to the normal vector of the scattering plane we also obtain the scattering angle. All D-dimensional observables are derived from an eikonal phase given as the free energy of the WQFT that is invariant under the $$ \mathcal{N} $$ N = 2 supersymmetry transformations.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
M. I. Abdulhamid ◽  
M. A. Al-Mashad ◽  
A. Bermudez Martinez ◽  
G. Bonomelli ◽  
I. Bubanja ◽  
...  

AbstractThe azimuthal correlation, $$\Delta \phi _{12}$$ Δ ϕ 12 , of high transverse momentum jets in pp collisions at $$\sqrt{s}=13$$ s = 13  TeV is studied by applying PB-TMD distributions to NLO calculations via MCatNLO together with the PB-TMD parton shower. A very good description of the cross section as a function of $$\Delta \phi _{12}$$ Δ ϕ 12 is observed. In the back-to-back region of $${\Delta \phi _{12}}\rightarrow \pi $$ Δ ϕ 12 → π , a very good agreement is observed with the PB-TMD Set 2 distributions while significant deviations are obtained with the PB-TMD Set 1 distributions. Set 1 uses the evolution scale while Set 2 uses transverse momentum as an argument in $$\alpha _\mathrm {s}$$ α s , and the above observation therefore confirms the importance of an appropriate soft-gluon coupling in angular ordered parton evolution. The total uncertainties of the predictions are dominated by the scale uncertainties of the matrix element, while the uncertainties coming from the PB-TMDs and the corresponding PB-TMD shower are very small. The $$\Delta \phi _{12}$$ Δ ϕ 12 measurements are also compared with predictions using MCatNLO together Pythia8, illustrating the importance of details of the parton shower evolution.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Luca Buonocore ◽  
Massimiliano Grazzini ◽  
Jürg Haag ◽  
Luca Rottoli

AbstractWe consider the associated production of a vector or Higgs boson with a jet in hadronic collisions. When the transverse momentum $$q_T$$ q T of the boson-jet system is much smaller than its invariant mass Q, the QCD perturbative expansion is affected by large logarithmic terms that must be resummed to all orders. We discuss the all-order resummation structure of the logarithmically enhanced contributions up to next-to-leading logarithmic accuracy. Resummation is performed at the differential level with respect to the kinematical variables of the boson-jet system. Soft-parton radiation produces azimuthal correlations that are fully accounted for in our framework. We present explicit analytical results for the resummation coefficients up to next-to-leading order and next-to-leading logarithmic accuracy, that include the exact dependence on the jet radius.


Sign in / Sign up

Export Citation Format

Share Document