cirsium arvense
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 34)

H-INDEX

31
(FIVE YEARS 2)

2022 ◽  
Vol 216 ◽  
pp. 105261
Author(s):  
Hong T.T. Phan ◽  
Tomke Susanne Wacker ◽  
Kristian Thorup-Kristensen

Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaolei Cao ◽  
Sifeng Zhao ◽  
Zhaoqun Yao ◽  
Xue Dong ◽  
Lu Zhang ◽  
...  

Cirsium arvense (Canada thistle) is a perennial herb native to Eurasia that has been introduced to temperate regions of the world where it is considered one of the serious weeds for arable and pastoral agriculture (Schröder et al. 1993). C. arvense reproduces both clonally and sexually. The weed is highly competitive, causes yield reductions in crops such as wheat, alfalfa, sugarbeet, and can reduce forage availability and production (Wilson 1981). Canada thistle is also a harbour for plant pathogens such as plant-parasitic nematodes (Tenuta et al. 2014). Sunflower broomrape (Orobanche cumana Wallr.) is a holoparasitic plant species with a restricted range of hosts both in the wild, where it mainly parasitizes a few species of the Asteraceae, and in agricultural fields, where it is exclusively found growing on sunflower (Fernández-Martínez et al. 2015). O. cumana infection can cause up to 80% of the yield loss in sunflower, which is a serious threat for sunflower production in Xinjiang and Inner Mongolia, China (Parker 2009). In July 2019, broomrape was observed parasitizing C. arvense in the greenhouse used for sunflower resistance identification (Shihezi, 86° 3' 36" E, 44° 18' 36" N, 500 m elevation) in Xinjiang, China. Fifty percent of the plants were parasitized by broomrape in the greenhouse and the host had an average of 1-2 broomrape shoots per plant. For molecular analysis, total genomic DNA was extracted from the flowers of broomrape and the rps2, rbcL, trnL-F genes, and ribosomal DNA internal transcribed spacer (ITS) region were amplified by PCR using the primer pairs rps2F/rps2R, rbcLF/rbcLR, C/F, ITS1/ITS4, respectively (Park et al. 2007; Manen et al. 2004; Taberlet et al. 1991; Anderson et al. 2004). The ITS (659bp), rps2 (451 bp), trnL-F (914 bp), and rbcL (961 bp) gene sequences of the broomrape were deposited in GenBank, the accession numbers are MT856745, MW809407, MW809408, and MW809409. The results of BLAST analysis showed that ITS sequence shared 100% similarity with O. cumana (659/659 nucleotide identity, MK567978), the rps2 sequence shared 99% similarity with O. cumana (449/451 nucleotide identity, KT387722), trnL-F sequence shared 99% similarity with O. cumana (907/911 nucleotide identity, MT027325), rbcL sequence shared 99% similarity with O. cumana (956/964 nucleotide identity, MK577840). The morphological characteristics such as stem, inflorescence, corolla, bracts, calyx, stamens, gynoecium are consistent with O. cumana described by Pujadas-Salvá and Velasco (2000). Morphological and molecular identification strongly support that the broomrape parasitic on C. arvense belonged to the O. cumana. Greenhouse pot experiments were carried out to assess the parasitic relationship between sunflower broomrape and C. arvense (Fernández-Martínez et al. 2000). In January 2020, C. arvense roots were harvested from an extant field of C. arvense in the greenhouse at Shihezi University (Supplementary Figure S1A). The soil was dug to 30-40 cm depth and C. arvense roots were removed and carefully washed in water. The healthy and living C. arvense roots were selected and cut into 10-11 cm pieces. Four C. arvense root pieces were grown (buried at a depth of 10-12 cm) in 8-L pots containing a mixture of sand-vermiculite-compost (1:1:1 v:v:v) and O. cumana seeds (50 mg of O. cumana seeds per 1 kg of the substrate) with 5 replicates. Three non-infected plants were grown and evaluated in parallel. Approximately 80 days after planting, at the flowering stage of the O. cumana, C. arvense plants were uprooted from the soil. Compared to non-infected plants, the hosts’ symptoms were slow growth, leaf wilting, and chlorosis, and similiar to the broomrape-infected C. arvense plants observed in the greenhouse field. The roots of C. arvense and broomrape were carefully washed in water and observed the parasitism of O. cumana. The infection was confirmed by observation of the attachment of the O. cumana to the C. arvense roots (Supplementary Figure S1D). To the best of our knowledge, this is the first report of O. cumana parasitizing C. arvense in Xinjiang, China. C. arvense as a new host of O. cumana indicates that sunflower broomrape can also propagate and survive in a host such as Canada thistle grown in sunflower fields. This finding suggests that it may be more difficult to control sunflower broomrape by rotation. In the next study, the contaminated area and the degree of parasitism of broomrape on C. arvense in the field will be investigated, and better-integrated control methods for controlling O. cumana will be designed. References: Schröder, D., et al. 1993. Weed. Res. 33:449-458. https://doi.org/10.1111/j.1365-3180.1993.tb01961.x Crossref, ISI, Google Scholar Wilson, R. G. 1981. Weed. Sci. 29:159-164. https://doi.org/10.1017/S0043174500061725 Crossref, ISI, Google Scholar Tenuta, M., et al. 2014. J. Nematol. 46(4):376–384. Fernández-Martínez, J. M., et al. 2015. Page 129 in: Sunflower Oilseed: Chemistry, Production, Processing and Utilization. AOCS Press, Champaign, IL. https://doi.org/10.1016/B978-1-893997-94-3.50011-8 Crossref, Google Scholar Parker, C. 2009. Pest Manag. Sci. 65:453-459. https://doi.org/10.1002/ps.1713 Crossref, ISI, Google Scholar Park, J. M., et al. 2007. Mol. Phylogenet. Evol. 43: 974. https://doi.org/10.1016/j.ympev.2006.10.011 Crossref, ISI, Google Scholar Manen, J. F., et al. 2004. Mol. Phylogenet. Evol. 33:482. https://doi.org/10.1016/j.ympev.2004.06.010 Crossref, ISI, Google Scholar Taberlet, P., et al. 1991. Plant Mol. Biol. 17:1105-1109. https://doi.org/10.1007/bf00037152 Crossref, ISI, Google Scholar Anderson, I.C., et al. 2004. Environ. Microbiol. 6: 769. https://doi.org/10.1111/j.1462-2920.2004.00675.x Crossref, ISI, Google Scholar Pujadas-Salvà, A. J., and Velasco, L. 2000. Bot. J. Linn. Soc. 134:513-527. https://doi.org/10.1006/bojl.2000.0346 Crossref, ISI, Google Scholar Fernández-Martínez, J. M., et al. 2000. Crop. Sci. 40:550-555.   https://doi.org/10.2135/cropsci2000.402550x Crossref, ISI, Google Scholar


2021 ◽  
Vol 27 (2) ◽  
pp. 173-180
Author(s):  
Malik Fiaz Hussain Ferdosi ◽  
Iqra Haider Khan ◽  
Arshad Javaid ◽  
Muhammad Faraz Ahmad Fardosi

Cirsium arvense (L.) Scop., commonly known as creeping thistle, is a weed of Asteraceae. This study was undertaken to explore various phytoconstituents present in flower of this weed. To achieve this goal, the dried flowers of this weed were soaked in methanol for one week and filtered. This methanolic extract was subjected to GC-MS analysis and 7 compounds were identified. These included olean-12-en-3-ol, acetate, (3β)- (63.87%), lanosta-8,24-dien-3-ol, acetate, (3β)- (12.12%), β-amyrin (6.19%), γ-sitosterol (6.09%), α-amyrin (5.24%), stigmasterol (3.29%) and carbonic acid, 2-ethylhexyl heptadecyl ester (3.16%). Literature survey showed that these compounds possess anti-inflamatory, antimicrobial, antidiabetic, antioxidant and/or anticancer activities.


2021 ◽  
Vol 3 ◽  
Author(s):  
Octave Lacroix ◽  
Jean-Noël Aubertot ◽  
Marko Bohanec ◽  
Stéphane Cordeau ◽  
David Camilo Corrales ◽  
...  

Throughout Europe, Cirsium arvense is the most problematic perennial weed in arable crops, whether managed under organic or conventional agriculture. Non-chemical control methods are limited with partial efficacy. Knowledge is missing on their effect across a wide gradient of cropping systems and pedoclimates. To achieve effective Cirsium arvense management ensuring crop productivity while limiting the reliance of cropping systems on herbicide, expert-based models are needed to gather knowledge on the effect of individual levers and their interactions in order to (i) design and assess finely tuned combinations of farming practices in different pedoclimates and (ii) support decisions for Cirsium arvense control. Based on expert-knowledge and literature, we developed IPSIM-Cirsium, a hierarchical qualitative model which evaluates the infestation of Cirsium arvense as a function of farming practices, climate conditions, soil descriptors and their interactions. IPSIM-Cirsium is a multi-attribute model considering all possibilities of interactions between factors, it estimates the infestation rate of the field graded according to a four-level scale. The model outputs were confronted to independent field observations collected across 6 fields, over a 16-year period in 3 sites. IPSIM-Cirsium showed a satisfactory predictive quality (accuracy of 78.2%). IPSIM-Cirsium can be used as a tool for crop advisors and researchers to assist the design of systems less reliant on herbicides, for farmers and advisers to assess ex-ante prototypes of cropping systems, and for teachers as an educational tool to share agroecological weed management knowledge.


Turczaninowia ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 145-153
Author(s):  
Elena A. Korolyuk ◽  
Tatyana V. An’kova ◽  
Andrey Yu. Korolyuk

Chromosome numbers (2n) for 13 rare, endemic plant species (19 populations) from the families: Asparagaceae, Asteraceae, Boraginaceae, Brassicaceae, Caryophillaceae, Euphorbiaceae, Plantaginaceae – are reported on the material from Mongolia. For Euphorbia potaninii Prokh. (2n = 20), Smelowskia altaica (Pobed.) Botsch. (2n = 14) chromosome complements were examined for the first time. Chromosome numbers of Askellia flexuosa (Ledeb.) W. A. Weber (2n = 42), Cirsium arvense var. vestitum Wimm. et Grab. (2n = 34), Crepis crocea (Lam.) Babc. (2n = 16), Eremogone meyerii (Fenzl) Ikonn. (2n = 44), Heterochroa desertorum Bunge (2n = 34), Plantago komarovii Pavl. (2n= 10, 12), Rhinactinidia eremophila (Bunge) Novopokr. ex Botsch. (2n = 36) were determined from Mongolia for the first time. New cytotypes for Anoplocaryum compressum (Turcz.) Ledeb. (2х) and Eremogone meyerii (4x) were studied. For the species of Plantago komarovii, the phenomenon of aneuploidy (2x = 10) was described for the first time. For each species the area and published data on karyology are given.


2021 ◽  
pp. 19-24
Author(s):  
V. Matyukha

Goal. To establish the biological effectiveness of herbicides and their tank mixtures for the protection of winter wheat crops from weeds in the Steppe of Ukraine. Methods. General scientific, the main of which were: field; measuring and weighing; variance and correlation. The Institute of Grain Crops (IGC) of NAAS of Ukraine studied the biological effectiveness of herbicides against the background of non–steam precursors (stubble, oats, sunflower), the experimental scheme included 17 options for the use of drugs and their tank mixtures. Results. It is proved that the complete and 100% control of weeds is provided by the tank mixture of herbicide Dialin super — 0.8 l/ ha in combination with the growth regulator Gulliver stimulus — 500 ml/ ha, 21.1 pieces/ m² of weeds are destroyed here, with of which 16.8 pieces/ m² were root–sprout perennials (field birch (Convolvulus arvensis L.), pink field thistle (Cirsium arvense L.), Tatar milkweed (Lactuca tatarica L.)). The maximum grain yields were provided by the plots where the tank mixture of dialen super — 0.8 l/ ha + PPP Gulliver stimulus — 1.0 l/ ha — 6.4 t/ ha was applied; Dialin super — 0.8 l/ ha + PPP Gulliver stimulus — 1.5 l/ ha — 6.1 t/ ha and Dialin super — 0.8 l/ ha + PPP Peram — 200 ml/ ha — 6.0 t/ ha, this can be explained mainly by the low level of weediness of the field after treatment with drugs, namely the low biomass of weeds 1.0—3.1 g/ m² while in the control and application of growth regulators they were significantly greater and were 59.6 and 20.7 g/ m², respectively. Conclusions. Complete and 100% control of weeds provides a tank mixture of herbicide Dialin super — 0.8 l/ ha in combination with the growth regulator Gulliver stimulus — 1.0 l/ ha resulting in a maximum wheat yield — 6.4 t/ ha and quality indicators grains.


2021 ◽  
Vol 265 ◽  
pp. 01023
Author(s):  
Elena Parakhina ◽  
Ksenia Naumova

In the study natural plant communities appearing at the first stages of vegetation recovery in open cuts are described. Sixty-three species of higher vascular plants were found, six of which are adventive (Bunias orientalis L., Cichorium intybus L., Cirsium arvense (L.) Scop., Melilotus albus Medik., Sedum spurium M.Bieb., Solidago canadensis L.). Species from the Asteraceae (15), Gramíneae (8), Fabáceae (7) families prevail. The predominant life form according to I. Serebryakov are long-rhizome. According to G. Zozulin’s classification, plants belonging to the meadow and birch formations are most common. The associations of Calamagrostis epigejos and Bromus inermis predominate. Cirsium arvense (L.) Scop., Heracleum sibiricum L., Campanula glomerata L. are single.


Author(s):  
Ю. В. Бенгус ◽  
Р. Є. Волкова

Наведено результати дослідження багаточисельної популяції червонокнижного виду Ornithothogalum boucheanum, виявленої вперше на території міста Харків у 2016 році. Для території міста Харків – це єдине відоме авторам природнє місцезростання виду, хоча він культивується в окремих ботанічних закладах Харкова. Дана популяція знаходиться на північній межі ареалу зростання O. boucheanum в Україні. На единій площі близько 7 га поблизу р. Немишля O. boucheanum масово зростає переважно на трьох основних ділянках загальною чисельністю у кілька тисяч квітучих особин, займаючи від 5 до 15% у загальному проективному покритті. Рястка Буше зростає у складі напівприродних рослинних угруповань з елементами антропогенної трансформації і домінуванням лучних (Ranunculus pedatus, Carex praecox, Poa angustifolia, P. pratensis, P. bulbosa , Elymus repens), лісових (Ficaria verna, Alliaria petiolata, Poa nemoralis) та рудеральних (Urtica dioica, Taraxacum campylodes, Cirsium arvense тощо) видів. Одна досліджена ділянка наразі зайнята лучною рослинністю, дві інші розташовані серед дерев з середньою (0,7) або невеликою (0,3) зімкненістю крон. Територія зростання дослідженої популяції знаходиться під впливом антропогенної діяльності (сінокосіння, косіння трави електричними засобами, випас тварин), але швидкий розвиток рослин O. boucheanum навесні і відмирання листків вже під час цвітіння призводять до того, що косіння і незначний випас не впливають на чисельність рослин дослідженого виду. Присутня велика кількість молодих рослин від вегетативного та насінного розмноження. Велика площа, на якій знайдені квітучі рослини O. boucheanum, практична відсутність на обстежених ділянках штучного озеленення та велика кількість знайдених рослин свідчать про те, що досліджена популяція є автохтонною. Авторські фотографії O. boucheanum з дослідженої території занесені до міжнародних баз даних iNaturalist та UkrBIN. Територія дослідження має важливе значення як місце зростання рослини занесеної до Червоної книги України, тому має отримати природоохоронний статус.


Sign in / Sign up

Export Citation Format

Share Document