climate information
Recently Published Documents


TOTAL DOCUMENTS

553
(FIVE YEARS 204)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Vol 3 ◽  
Author(s):  
Tufa Dinku ◽  
Rija Faniriantsoa ◽  
Remi Cousin ◽  
Igor Khomyakov ◽  
Audrey Vadillo ◽  
...  

Despite recent and mostly global efforts to promote climate services in developing countries, Africa still faces significant limitations in its institutional infrastructure and capacity to develop, access, and use decision-relevant climate data and information products at multiple levels of governance. The Enhancing National Climate Services (ENACTS) initiative, led by Columbia University's International Research Institute for Climate and Society (IRI), strives to overcome these challenges by co-developing tailored, actionable, and decision-relevant climate information with and for a wide variety of users at the local, regional, and national levels. This is accomplished through an approach emphasizing direct engagement with the National Meteorological and Hydrological Services (NMHS) and users of their products, and investments in both technological and human capacities for improving the availability, access, and use of quality climate data and information products at decision-relevant spatial and temporal scales. In doing so, the ENACTS approach has been shown to be an effective means of transforming decision-making surrounding vulnerabilities and risks at multiple scales, through implementation in over a dozen countries at national level as well as at the regional levels in both East and West Africa. Through the ENACTS approach, challenges to availability of climate data are alleviated by combining quality-controlled station observations with global proxies to generate spatially and temporally complete climate datasets. Access to climate information is enhanced by developing an online mapping service that provides a user-friendly interface for analyzing and visualizing climate information products. Use of the generated climate data and the derived information products is promoted through raising awareness in relevant communities, training users, and co-production processes.


2022 ◽  
Vol 7 (1) ◽  
pp. e007842
Author(s):  
Anna M Stewart-Ibarra ◽  
Leslie Rollock ◽  
Sabu Best ◽  
Tia Brown ◽  
Avriel R Diaz ◽  
...  

Over the past decade, the Caribbean region has been challenged by compound climate and health hazards, including tropical storms, extreme heat and droughts and overlapping epidemics of mosquito-borne diseases, including dengue, chikungunya and Zika. Early warning systems (EWS) are a key climate change adaptation strategy for the health sector. An EWS can integrate climate information in forecasting models to predict the risk of disease outbreaks several weeks or months in advance. In this article, we share our experiences of co-learning during the process of co-creating a dengue EWS for the health sector in Barbados, and we discuss barriers to implementation as well as key opportunities. This process has involved bringing together health and climate practitioners with transdisciplinary researchers to jointly identify needs and priorities, assess available data, co-create an early warning tool, gather feedback via national and regional consultations and conduct trainings. Implementation is ongoing and our team continues to be committed to a long-term process of collaboration. Developing strong partnerships, particularly between the climate and health sectors in Barbados, has been a critical part of the research and development. In many countries, the national climate and health sectors have not worked together in a sustained or formal manner. This collaborative process has purposefully pushed us out of our comfort zone, challenging us to venture beyond our institutional and disciplinary silos. Through the co-creation of the EWS, we anticipate that the Barbados health system will be better able to mainstream climate information into decision-making processes using tailored tools, such as epidemic forecast reports, risk maps and climate-health bulletins, ultimately increasing the resilience of the health system.


2021 ◽  
Author(s):  
Christopher Kadow ◽  
David M. Hall ◽  
Uwe Ulbrich ◽  
Johannes Meuer ◽  
Thomas Ludwig

<p>Historical temperature measurements are the basis of global climate datasets like HadCRUT4. This dataset contains many missing values, particularly for periods before the mid-twentieth century, although recent years are also incomplete. Here we demonstrate that artificial intelligence can skilfully fill these observational gaps when combined with numerical climate model data. We show that recently developed image inpainting techniques perform accurate monthly reconstructions via transfer learning using either 20CR (Twentieth-Century Reanalysis) or the CMIP5 (Coupled Model Intercomparison Project Phase 5) experiments. The resulting global annual mean temperature time series exhibit high Pearson correlation coefficients (≥0.9941) and low root mean squared errors (≤0.0547 °C) as compared with the original data. These techniques also provide advantages relative to state-of-the-art kriging interpolation and principal component analysis-based infilling. When applied to HadCRUT4, our method restores a missing spatial pattern of the documented El Niño from July 1877. With respect to the global mean temperature time series, a HadCRUT4 reconstruction by our method points to a cooler nineteenth century, a less apparent hiatus in the twenty-first century, an even warmer 2016 being the warmest year on record and a stronger global trend between 1850 and 2018 relative to previous estimates. We propose image inpainting as an approach to reconstruct missing climate information and thereby reduce uncertainties and biases in climate records.</p> <p>As published in:</p> <p>Kadow, C., Hall, D.M. & Ulbrich, U. Artificial intelligence reconstructs missing climate information. <em>Nat. Geosci.</em> <strong>13, </strong>408–413 (2020). https://doi.org/10.1038/s41561-020-0582-5</p> <p>Newest developments around the technology will be presented.</p> <p> </p>


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1674
Author(s):  
Winifred Ayinpogbilla Atiah ◽  
Francis K. Muthoni ◽  
Bekele Kotu ◽  
Fred Kizito ◽  
Leonard K. Amekudzi

Rainfall onset and cessation date greatly influence cropping calendar decisions in rain-fed agricultural systems. This paper examined trends of onsets, cessation, and the length of growing season over Northern Ghana using CHIRPS-v2, gauge, and farmers’ perceptions data between 1981 and 2019. Results from CHIRPS-v2 revealed that the three seasonal rainfall indices have substantial latitudinal variability. Significant late and early onsets were observed at the West and East of 1.5° W longitude, respectively. Significant late cessations and longer growing periods occurred across Northern Ghana. The ability of farmers’ perceptions and CHIRPS-v2 to capture rainfall onsets are time and location-dependent. A total of 71% of farmers rely on traditional knowledge to forecast rainfall onsets. Adaptation measures applied were not always consistent with the rainfall seasonality. More investment in modern climate information services is required to complement the existing local knowledge of forecasting rainfall seasonality.


2021 ◽  
Vol 169 (3-4) ◽  
Author(s):  
Helen Fillmore ◽  
Loretta Singletary

AbstractIndigenous communities on reservation lands across the USA continue to demonstrate their leadership in climate resilience through active engagement in co-producing interdisciplinary solutions to adaptation. These initiatives, however, often ask Indigenous peoples to provide knowledge and resources to assist with adaptation efforts beyond their communities, which can limit their capacity to act locally. Trusting their expertise, we utilize a participatory research approach that asks tribal government employees, agriculturalists, researchers, and outreach professionals to prioritize the climate information and data they perceive as necessary to enhance the climate resilience of water resources of Indigenous communities. In doing so, this study provides empirical evidence specific to the climate adaptation needs of Indigenous communities on reservation lands in the arid southwestern USA. Study respondents prioritize climate information and data that serve to assess local climate change impacts, enhance food security, and integrate and protect the traditional knowledge of their communities. In this arid and predominantly rural region, respondents prioritize water quality data as their highest need followed by streamflow and air temperature data. They most frequently access their respective tribal government sources of climate information and data. These results indicate that localized climate data and information are highly prioritized. Future research and action to alleviate information and data gaps should account for the relevance, accessibility, and protection of these resources while prioritizing methods that ensure Indigenous sovereignty and self-determination rather than knowledge extraction.


2021 ◽  
Vol 24 ◽  
pp. 100267
Author(s):  
Le Thi Hoa Sen ◽  
Jennifer Bond ◽  
Nguyen Tien Dung ◽  
Hoang Gia Hung ◽  
Nguyen Thi Hong Mai ◽  
...  

2021 ◽  
Vol 13 (22) ◽  
pp. 4721
Author(s):  
Gloriose Nsengiyumva ◽  
Tufa Dinku ◽  
Remi Cousin ◽  
Igor Khomyakov ◽  
Audrey Vadillo ◽  
...  

Making climate-sensitive economic sectors resilient to climate trends and shocks, through adaptation to climate change and managing uncertainties associated with climate extremes, will require effective use of climate information to help practitioners make climate-informed decisions. The provision of weather and climate information will depend on the availability of climate data and its presentation in formats that are useful for decision making at different levels. However, in many places around the world, including most African countries, the collection of climate data has been seriously inadequate, and even when available, poorly accessible. On the other hand, the availability of climate data by itself may not lead to the uptake and use of such data. These data must be presented in user-friendly formats addressing specific climate information needs in order to be used for decision-making by governments, as well as the public and private sectors. The generated information should also be easily accessible. The Enhancing National Climate Services (ENACTS) initiative, led by Columbia University’s International Research Institute for Climate and Society (IRI), has been making efforts to overcome these challenges by supporting countries to improve the available climate data, as well as access to and use of climate information products at relevant spatial and temporal scales. Challenges to the availability of climate data are alleviated by combining data from the national weather observation network with remote sensing and other global proxies to generate spatially and temporally complete climate datasets. Access to climate information products is enhanced by developing an online mapping service that provides a user-friendly interface for analyzing and visualizing climate information products such as maps and graphs.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1515
Author(s):  
Issa Ouedraogo ◽  
Ndèye Seynabou Diouf ◽  
Gnalenba Ablouka ◽  
Robert B. Zougmoré ◽  
Anthony Whitbread

Weather and climate information services (WCIS) are gaining recognition among scientists and governments as an essential adaptation tool for agriculture, especially in the drylands of Africa. In Senegal, the widespread production and dissemination of WCIS was initiated in 2015 to cover the agricultural, pastoral and fishing sectors. This paper analyzes the types of decisions made by WCIS users, their preferences and level of satisfaction, and explores the triggers of agricultural WCIS adoption. We collected data during the onset and cessation of the rainy seasons to understand the utility and reliability of WCIS by farmers across all stages of the growing season. Data were analyzed using descriptive statistics. A binary logistic regression was tested to understand the socio-economic triggers in uptake of WCIS. Results showed that rainfall forecast is the most preferred WCIS (49% of the respondents) followed by extreme wind forecast. At the beginning of the rainy season, nearly 80% of the respondents have chosen the sowing date and about 60% have chosen crop varieties based on disseminated WCIS. In the middle of the growing season, about 70% of the respondents used WCIS to decide on fertilizer application dates. Results also showed that age and level of education, being trained on WCIS use, membership to farmers’ organizations, owning a radio have a significant effect on WCIS-based decision-making. These factors are essential for triggering the uptake of WCIS, and therefore are required to improve the implementation of existing weather climate services in Africa.


Sign in / Sign up

Export Citation Format

Share Document