organic thin film transistor
Recently Published Documents


TOTAL DOCUMENTS

613
(FIVE YEARS 84)

H-INDEX

41
(FIVE YEARS 5)

Author(s):  
Yasuhiro Ogasahara ◽  
Kazunori Kuribara ◽  
Kunihiro Oshima ◽  
Zhaoxing Qin ◽  
Takashi Sato

Abstract This paper reports on a strategy for yield improvement and static leakage current reduction by using a standard cell design for large-scale organic thin-film transistor (OTFT) circuits. Printable or flexible devices are suitable for IoT nodes, and digital OTFT circuits comprise the peripheral circuits of such devices. Sufficiently high yields and low static power consumptions are essential for battery operations of IoT nodes having functional digital circuits. Our design method to address the weak n-type OTFT on-current results in improved logic gate yields without any cell area increase. We improved the yield of the inverter, NAND, and NOR gates using a standard cell design, and achieved a 100%yield for the inverter and NOR gates and 88%yield for the NAND gates. Signal propagations with rail-to-rail operation were measured on test chips. Leakage currents of 585 pA and 2.94 nA were achieved for the inverter and NOR gates, respectively.


2021 ◽  
Vol 278 ◽  
pp. 116825
Author(s):  
Zhuozhi Yao ◽  
Ting-Jung Chang ◽  
David Wentzlaff ◽  
Barry P. Rand

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 817
Author(s):  
Baji Shaik ◽  
Mujeeb Khan ◽  
Mohammed Rafi Shaik ◽  
Mohammed A.F. Sharaf ◽  
Doumbia Sekou ◽  
...  

A-π-D-π-A-based small molecules 6,6′-((thiophene-2,5-diylbis(ethyne-2,1-diyl))bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (TDPP-T) and 6,6′-(((2,3-dihydrothieno[3,4-b][1,4]dioxine-5,7-diyl)bis(ethyne-2,1-diyl))bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (TDPP-EDOT) have been designed and synthesized. The diketopyrrolopyrrole acts as an electron acceptor, while the thiophene or 3,4-ethylenedioxythiophene acts as an electron donor. The donor–acceptor groups are connected by an ethynyl bridge to further enhance the conjugation. The optoelectronics, electrochemical, and thermal properties have been investigated. Organic thin film transistor (OTFT) devices prepared from TDPP-T and TDPP-EDOT have shown p-type mobility. In as cast films, TDPP-T and TDPP-EDOT have shown a hole mobility of 5.44 × 10−6 cm2 V−1 s−1 and 4.13 × 10−6 cm2 V−1 s−1, respectively. The increase in the mobility of TDPP-T and TDPP-EDOT OTFT devices was observed after annealing at 150 °C, after which the mobilities were 3.11 × 10−4 cm2 V−1 s−1 and 2.63 × 10−4 cm2 V−1 s−1, respectively.


Sign in / Sign up

Export Citation Format

Share Document