global optimization method
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 43)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 8 (1) ◽  
pp. 149-163
Author(s):  
Yu He ◽  
Guo-Dong Zhao ◽  
Song-Hai Zhang

AbstractStable label movement and smooth label trajectory are critical for effective information understanding. Sudden label changes cannot be avoided by whatever forced directed methods due to the unreliability of resultant force or global optimization methods due to the complex trade-off on the different aspects. To solve this problem, we proposed a hybrid optimization method by taking advantages of the merits of both approaches. We first detect the spatial-temporal intersection regions from whole trajectories of the features, and initialize the layout by optimization in decreasing order by the number of the involved features. The label movements between the spatial-temporal intersection regions are determined by force directed methods. To cope with some features with high speed relative to neighbors, we introduced a force from future, called temporal force, so that the labels of related features can elude ahead of time and retain smooth movements. We also proposed a strategy by optimizing the label layout to predict the trajectories of features so that such global optimization method can be applied to streaming data.


2021 ◽  
Vol 10 (10) ◽  
pp. e326101019028
Author(s):  
Sávio José Vieira Zaccaro ◽  
Adhimar Flávio Oliveira ◽  
Rero Marques Rubinger ◽  
Crediana Chris de Siqueira ◽  
Roberto Affonso da Costa Junior

Silicon dioxide (SiO2) is a material that is abundant in nature and has wide application in semiconductor and insulating devices. In this work, a set of six SiO2 samples were grown on a Sigma-Aldrich Silicon substrate, varying the growth time and temperature. This set of samples were grown using times of 10 and 12h and temperatures of 800, 900, and 1000 ºC, under ambient atmosphere. After film growth, reflectance measurements were performed on the films and the substrate, using the Stellarnet UV-VIS-NIR spectrophotometer between 194 and 1081.5 nm. These measurements were modeled using a global optimization method, called Cross-entropy, together with the Bootstrapping resampling technique, seeking to robustly and statistically determine the thin film refractive index as a function of the wavelength and its thickness. To estimate the refractive index of the SiO2 thin film, the Cauchy model was used. For the substrate, reflectance measurements were used. The method proved to be efficient, presenting thickness values that were validated according to growth parameters and literature data. This method proved to be an important and low-cost tool, compared to traditional methods, to help in the steps of building thin films for semiconductor and insulating devices, thus improving their physical properties and enabling the development of new devices.


Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 169
Author(s):  
Xiangming Xiong ◽  
Xiaotian Li

Optimization methods have been used to determine the elastic, piezoelectric, and dielectric constants of piezoelectric materials from admittance or impedance measurements. The optimal material constants minimize the difference between the modeled and measured admittance or impedance spectra. In this paper, a global optimization method is proposed to calculate the optimal material constants of piezoelectric bars in the length thickness extensional mode. The algorithm is applied to a soft PZT and a hard PZT and is shown to be robust.


Sign in / Sign up

Export Citation Format

Share Document