zirconia coating
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 24)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
pp. 000370282110571
Author(s):  
Dominik Wacht ◽  
Mauro David ◽  
Borislav Hinkov ◽  
Hermann Detz ◽  
Andreas Schwaighofer ◽  
...  

Mid-infrared attenuated total reflection (ATR) spectroscopy is a powerful tool for in situ monitoring of various processes. Mesoporous silica, an extensively studied material, has already been applied in sensing schemes due to its high surface area and tunable surface chemistry. However, its poor chemical stability in aqueous solutions at pH values higher than 8 and strong absorption below 1250 cm−1 limits its range of applications. To circumvent these problems, a mesoporous zirconia coating on ATR crystals was developed. Herein, the synthesis, surface modification, and characterization of ordered mesoporous zirconia films on Si wafers and Si-ATR crystals are presented. The modified coating was applied in sensing schemes using aromatic and aliphatic nitriles in aqueous solution as organic pollutants. The mesoporous zirconia coating shows strong chemical resistance when kept in alkaline solution for 72 h. The success of surface modification is confirmed using Fourier transform infrared (FT-IR) spectroscopy and contact angle measurements. Benzonitrile and valeronitrile in water are used as model analytes to evaluate the enrichment performance of the film. The experimental results are fitted using Freundlich isotherms, and enrichment factors of 162 and 26 are calculated for 10 mg L−1 benzonitrile and 25 mg L−1 valeronitrile in water, respectively. Limits of detection of 1 mg L−1 for benzonitrile and 11 mg L−1 for valeronitrile are obtained. The high chemical stability of this coating allows application in diverse fields such as catalysis with the possibility of in situ monitoring using FT-IR spectroscopy.


Author(s):  
Clara Anghel ◽  
Magnus Limbäck ◽  
Gunnar Westin ◽  
Terje Tverberg ◽  
Björn Andersson ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 214-222
Author(s):  
Zhiwei Su ◽  
Mingxing Li ◽  
Ling Zhang ◽  
Chaoyang Wang ◽  
Leiqing Zhang ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohamed Abd-Elsattar Hafez ◽  
Sameh Ahmed Akila ◽  
Mohamed Atta Khedr ◽  
Ali Saeid Khalil

AbstractThe phase stability and microstructure of ZrO2–5CaO and ZrO2–24MgO mixed coating (wt%) by air plasma spraying on 304 stainless steel substrates were investigated. A Ni–5Al (wt%) metallic bond coating was firstly sprayed between the substrate and the ceramic top layer. The results were compared with the individual coatings of ZrO2–5CaO and ZrO2–24MgO for a better understanding of the correlation between their microstructures and mechanical properties. Mixed zirconia coating was found to have a mixture of cubic and tetragonal phases that stabilized under different plasma spray conditions. Microscopic observations and elemental composition analysis of as-sprayed mixed coating showed that modified ceramic-matrix grains had been formed. Microsized ZrO2–5CaO particles were embedded in the matrix grain creating an intragranular microstructure. Results indicated that ceramic-matrix grains provided a diffusion barrier for the growth of oxides induced stress near and onto the bond layer that reduced cracks, thereby overcoming the top delamination of the ceramic coating. Moreover, disparity in wear resistance and microhardness behavior of the coatings was influenced by initial feedstock powder and matrix microstructures. Improvement in the wear resistance of the mixed zirconia coating was attributed to a decrease in oxide content, which resulted in an increase in intersplat cohesive strength.


Sign in / Sign up

Export Citation Format

Share Document