detailed structure
Recently Published Documents


TOTAL DOCUMENTS

459
(FIVE YEARS 70)

H-INDEX

43
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Haoxuan Yuan ◽  
Qiangyu Zeng ◽  
Jianxin He

Accurate and high-resolution weather radar data reflecting detailed structure information of radar echo plays an important role in analysis and forecast of extreme weather. Typically, this is done using interpolation schemes, which only use several neighboring data values for computational approximation to get the estimated, resulting the loss of intense echo information. Focus on this limitation, a superresolution reconstruction algorithm of weather radar data based on adaptive sparse domain selection (ASDS) is proposed in this article. First, the ASDS algorithm gets a compact dictionary by learning the precollected data of model weather radar echo patches. Second, the most relevant subdictionaries are adaptively select for each low-resolution echo patches during the spare coding. Third, two adaptive regularization terms are introduced to further improve the reconstruction effect of the edge and intense echo information of the radar echo. Experimental results show that the ASDS algorithm substantially outperforms interpolation methods for ×2 and ×4 reconstruction in terms of both visual quality and quantitative evaluation metrics.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 256
Author(s):  
Artur Kierzkowski ◽  
Tomasz Kisiel

The purpose of this paper was to develop a simulation model to perform a sensitivity analysis of the energy consumption of an airport baggage handling system to a change in resource allocation strategy. This is a novel approach as this aspect has not been considered until now. This aspect, in turn is very important in terms of sustainability. The paper presents the detailed structure of the model and the data on which it operates. It is universal and can be the basis for analyzing any structure of the baggage handling system in the landside of any airport. An example analysis has shown that even up to 35% benefits can be gained by using the model. Three scenarios were analyzed in the model (dedicated check-in desks scenario, common desks scenario and mixed strategy scenario). However, the model is not limited to these strategies and any resource allocation is possible. The model is useful both for planning a new system as well as optimizing an existing system during its operation.


Author(s):  
Yushi Suzuki ◽  
Hiroki Kajita ◽  
Shiho Watanabe ◽  
Keisuke Okabe ◽  
Hisashi Sakuma ◽  
...  

Abstract Background Lymphatic vessels are difficult to identify using existing modalities as because of their small diameter and the transparency of the lymph fluid flowing through them. Methods Here, we introduce photoacoustic lymphangiography (PAL), a new modality widely used for lymphedema treatment, to observe limb lymphatic vessels. The photoacoustic imaging system used in this study can simultaneously visualize lymphatic vessels and veins with a high resolution (0.2 mm) and can also observe their three-dimensional relationship with each other. Results High-resolution images of the lymphatic vessels, detailed structure of the dermal back flow, and the three-dimensional positional relationship between the lymphatic vessels and veins were observed by PAL. Conclusion The clear image provided by PAL could have a major application in pre- and postoperative use during lymphaticovenular anastomosis for lymphedema treatment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lin Zhang ◽  
Qian Wang ◽  
Jie Li ◽  
Chuanhui Wang

ZnO was introduced into Ca0.6Sr0.4TiO3 ceramics as a dopant and an intergrangular phase in this research, followed by detailed structure characterization, energy storage performance analysis, and electrical behavior studies. The results revealed that the existence of ZnO as a dopant led to the decrease of conduction activation energy and the deterioration of energy storage behavior, while appropriate introduction of ZnO as an intergranular phase resulted in the increase of conduction activation energy and the optimization of energy storage performance. Additionally, the inverse relation between interfacial polarization and energy storage performance was observed in this study. Finally, an increased energy storage density of 1.16 J/cm3 was achieved in 1 mol% ZnO-added Ca0.6Sr0.4TiO3 ceramics.


2021 ◽  
Author(s):  
Paramita Deb ◽  
Sabyasachi Ghosh ◽  
Jai Prakash ◽  
Santosh Kumar Das ◽  
Raghava Varma

Abstract The masses of pion and sigma meson modes, along with their dissociation in the quark medium, provide detailed spectral structures of the chiral partners. One has seen collectivity in pA and pp systems both at LHC and RHIC. In this article, we study the restoration of chiral symmetry by investigating the finite size effect on the detailed structure of the chiral partners in the framework of the Nambu-Jona-Lasinio model. Their diffusions and conductions have been studied through this dissociation mechanism. It is found that the masses, widths, diffusion coefficients, conductivities of chiral partners merge at different temperatures in the restoration phase of chiral symmetry. However, merging points are shifted to lower temperatures when one introduces the finite size effect into the picture. The strengths of diffusions and conductions are also reduced once the finite size is introduced in the calculations.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5663
Author(s):  
Ilias Glogovitis ◽  
Galina Yahubyan ◽  
Thomas Würdinger ◽  
Danijela Koppers-Lalic ◽  
Vesselin Baev

Tools for microRNA (miR) sequencing data analyses are broadly used in biomedical research. However, the complexity of computational approaches still remains a challenge for biologists with scarce experience in data analytics and bioinformatics. Here, we present miRGalaxy, a Galaxy-based framework for comprehensive analysis of miRs and their sequence variants—miR isoforms (isomiRs). Though isomiRs are commonly reported in deep-sequencing experiments, their detailed structure complexity and specific differential expression (DE) remain not fully examined by the majority of the available analysis tools. miRGalaxy encompasses biologist-user-friendly tools and workflows dedicated to the analysis of the isomiR-ome and its complex behavior in various biological samples. miRGalaxy is developed as a modular, accessible, redistributable, shareable, and user-friendly framework for scientists working with small RNA (sRNA)-seq data. Due to its modular workflow, advanced users can customize the steps and tools for their needs. In addition, the framework provides an analysis report where the significant output results are summarized in charts and visualizations. miRGalaxy can be accessed via preconfigured Docker image flavor and a Toolshed installation if the user already has a running Galaxy instance. Over the last decade, studies on the expression of miRs and isomiRs in normal and deregulated tissues have led to the discovery of their potential as diagnostic biomarkers. The detection of miRs in biofluids further expanded the exploration of the miR repertoire as a source of liquid biopsy biomarkers. Here we show the miRGalaxy framework application for in-depth analysis of the sRNA-seq data from two different biofluids, milk and plasma, to identify, annotate, and discover specific differentially expressed miRs and isomiRs.


2021 ◽  
Vol 2105 (1) ◽  
pp. 012023
Author(s):  
T. Alexopoulos ◽  
E. N. Gazis ◽  
S. Maltezos ◽  
I. Mesolongitis

Abstract The New Small Wheel Micromegas detector system for the Upgrade of ATLAS Muon Spectrometer is in the phase of integration and commissioning at the Laboratories BB5 and Building 191 at CERN respectively. In this framework, the produced modules are evaluated and tested at a Cosmic Ray Stand or at their final position on New Small Wheel. Providing gas mixture to the Micromegas Wedges, the static gauge pressure inside the detector’s layers must be kept below a nominal value around 3 mbar. Pressures above 10 mbar, due several reasons or gas line blocking, could cause serious damages in the detectors. In this work we describe the principle of operation and the design of a low cost intelligent unit, the “Differential Safety Mechanism”, dedicated to protect the Micromegas Wedges against unexpected slow or sudden increase of the static gauge pressure. The internal detailed structure, the simulation and the prototype tests of the DSM are presented analytically in this work.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012066
Author(s):  
A V Trotsyuk

Abstract Numerical simulation of continuously rotating detonations of stoichiometric two-fuel mixture with air has been carried out for the cylindrical annular detonation chamber (DC) of the rocket-type engine. The syngas (1-α)СO+αH2, a binary mixture of hydrogen H2 and carbon monoxide CO, is taken. We studied the global flow structure in DC, and the detailed structure of the transverse wave (TW) front in the continuous rotating regime. Integral characteristics of the detonation process − the distribution of average values of static and total pressure along the length of the DC, and the value of specific impulse have been obtained. The region of existence of stable continuous detonation regime in coordinates of the stagnation pressure - temperature in injection manifold (receiver) and the geometric limit of stable TW have been determined.


2021 ◽  
Vol 885 (1) ◽  
pp. 012035
Author(s):  
A Y Bibaeva

Abstract The research considers the results of the aesthetic assessment of landscapes in the central ecological zone of the Baikal natural territory (CEZ BNT). The expert assessment based on a set of indicators was carried out in Quantum GIS using landscape photographs. Cartographic materials (landscape typological map, Forest Resource Management maps, SRTM, areas affected by fire, etc.) were also involved in the assessment. The map «Aesthetic Evaluation of the Geosystems of the Central Ecological zone of Lake Baikal within the Borders of the Irkutsk Region» was created based on the analysis of the estimated indicators of the aesthetic landscape quality. The construction of the map is based on the principle of the priority of landscape scene viewpoints; the assessment is assigned to the polygon from which the landscape scene is observed. The article contains the detailed structure of the landscape scene complexes of the CEZ BNT.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Wenqiang Dang

After completing the construction project approval, the universities will entrust a qualified design institute to carry out plan design, preliminary design and construction drawing design. Among them, the construction drawings are used to show the external shape, internal layout, detailed structure, and fixed facilities of the building, and its design depth meets the requirements for guiding construction. Construction drawings are an important basis for universities to compile bills of quantities, launch bidding, and organize construction. They are also a key factor for universities construction projects to achieve quality, investment, and schedule control goals. Therefore, the establishment of a complete construction drawing review mechanism to improve the quality of construction drawings is of great significance to the later project management.


Sign in / Sign up

Export Citation Format

Share Document