enzyme expression
Recently Published Documents


TOTAL DOCUMENTS

617
(FIVE YEARS 92)

H-INDEX

56
(FIVE YEARS 6)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 142
Author(s):  
Mimi Nguyen ◽  
Reem Sabry ◽  
Ola S. Davis ◽  
Laura A. Favetta

Bisphenol A (BPA) and its analogs, bisphenol S (BPS) and bisphenol F (BPF), might impact fertility by altering oxidative stress pathways. Here, we hypothesize that bisphenols-induced oxidative stress is responsible for decreased gamete quality. In both female (cumulus-oocyte-complexes—COCs) and male (spermatozoa), oxidative stress was measured by CM-H2DCFDA assay and key ROS scavengers (SOD1, SOD2, GPX1, GPX4, CAT) were quantified at the mRNA and protein levels using qPCR and Western blot (COCs)/immunofluorescence (sperm). Either gamete was treated in five groups: control, vehicle, and 0.05 mg/mL of BPA, BPS, or BPF. Our results show elevated ROS in BPA-treated COCs but decreased production in BPS- and BPF-treated spermatozoa. Additionally, both mRNA and protein expression of SOD2, GPX1, and GPX4 were decreased in BPA-treated COCs (p < 0.05). In sperm, motility (p < 0.03), but not morphology, was significantly altered by bisphenols. SOD1 mRNA expression was significantly increased, while GPX4 was significantly reduced. These results support BPA’s ability to alter oxidative stress in oocytes and, to a lesser extent, in sperm. However, BPS and BPF likely act through different mechanisms.


2021 ◽  
Vol 5 (2) ◽  
pp. 82-98
Author(s):  
Onur DİRİCAN ◽  
Pınar KAYGIN ◽  
Sezen YILMAZ SARIALTIN ◽  
Can YILMAZ ◽  
Volkan ATEŞ ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1811
Author(s):  
Yuting Cui ◽  
Yue Xiong ◽  
Hua Li ◽  
Mengqi Zeng ◽  
Yan Wang ◽  
...  

NF-E2-related factor 2 (Nrf2), the key transcription regulator of phase II enzymes, has been considered beneficial for neuronal protection. We previously designed a novel chalcone analog, 1-(2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-acrylketone (Tak), that could specifically activate Nrf2 in vitro. Here, we report that Tak confers significant hippocampal neuronal protection both in vitro and in vivo. Treatment with Tak has no significant toxicity on cultured neuronal cells. Instead, Tak increases cellular ATP production by increasing mitochondrial function and decreases the levels of reactive oxygen species by activating Nrf2-mediated phase II enzyme expression. Tak pretreatment prevents glutamate-induced excitotoxic neuronal death accompanied by suppressed mitochondrial respiration, increased superoxide production, and activation of apoptosis. Further investigation indicates that the protective effect of Tak is mediated by the Akt signaling pathway. Meanwhile, Tak administration in mice can sufficiently abrogate scopolamine-induced cognitive impairment via decreasing hippocampal oxidative stress. In addition, consistent benefits are also observed in an energy stress mouse model under a high-fat diet, as the administration of Tak remarkably increases Akt signaling-mediated antioxidative enzyme expression and prevents hippocampal neuronal apoptosis without significant effect on the mouse metabolic status. Overall, our study demonstrates that Tak protects cognitive function by Akt-mediated Nrf2 activation to maintain redox status both vivo and in vitro, suggesting that Tak is a promising pharmacological candidate for the treatment of oxidative neuronal diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erika Yoshida ◽  
Motoki Kojima ◽  
Munenori Suzuki ◽  
Fumio Matsuda ◽  
Kazutaka Shimbo ◽  
...  

Abstract(−)-Carvone is a monoterpenoid with a spearmint flavor. A sustainable biotechnological production process for (−)-carvone is desirable. Although all enzymes in (−)-carvone biosynthesis have been functionally expressed in Escherichia coli independently, the yield was low in previous studies. When cytochrome P450 limonene-6-hydroxylase (P450)/cytochrome P450 reductase (CPR) and carveol dehydrogenase (CDH) were expressed in a single strain, by-product formation (dihydrocarveol and dihydrocarvone) was detected. We hypothesized that P450 and CDH expression levels differ in E. coli. Thus, two strains independently expressing P450/CPR and CDH were mixed with different ratios, confirming increased carvone production and decreased by-product formation when CDH input was reduced. The optimum ratio of enzyme expression to maximize (−)-carvone production was determined using the proteome analysis quantification concatamer (QconCAT) method. Thereafter, a single strain expressing both P450/CPR and CDH was constructed to imitate the optimum expression ratio. The upgraded strain showed a 15-fold improvement compared to the initial strain, showing a 44 ± 6.3 mg/L (−)-carvone production from 100 mg/L (−)-limonene. Our study showed the usefulness of the QconCAT proteome analysis method for strain development in the industrial biotechnology field.


2021 ◽  
Vol 78 (18) ◽  
pp. 1782-1795
Author(s):  
Amrut V. Ambardekar ◽  
Matthew S. Stratton ◽  
Evgenia Dobrinskikh ◽  
Kendall S. Hunter ◽  
Philip D. Tatman ◽  
...  

2021 ◽  
Author(s):  
Guofa Zhou ◽  
Yiji Li ◽  
Brook Jeang ◽  
Xiaoming Wang ◽  
Daibin Zhong ◽  
...  

Piperonyl butoxide (PBO)-synergized pyrethroid products are widely available for the control of pyrethroid-resistant mosquitoes. To date, no study has formally examined mosquito resistance to PBO-synergized insecticides. We used Culex quinquefasciatus as a model mosquito examined the insecticide resistance mechanisms of mosquitoes to PBO-synergized pyrethroid using modified World Health Organization tube bioassays and biochemical analysis of metabolic enzyme expressions prior- and post-PBO exposure. We measured mosquito mortalities and metabolic enzyme expressions in mosquitoes with/without pre-exposure to different PBO concentrations and exposure durations. We found that field Culex quinquefasciatus mosquitoes were resistant to all insecticides tested, including PBO-synergized pyrethroids (mortality ranged from 3.7±4.7% to 66.7±7.7%), except malathion. Field mosquitoes had elevated levels of carboxylesterase (COE, 3.8-fold) and monooxygenase (P450, 2.1-fold) but not glutathione S-transferase (GST) compared to susceptible mosquitoes. When the field mosquitoes were pre-exposed to 4% PBO, the 50% lethal concentration of deltamethrin was reduced from 0.22% to 0.10%, compare to 0.02% for susceptible mosquitoes. Knockdown resistance gene mutation (L1014F) rate was 62% in field mosquitoes. PBO pre-exposure suppressed P450 enzyme expression levels by 25~34%, GST by 11%, and had no impact on COE enzyme expression. Even with the optimal PBO concentration and exposure duration, field mosquitoes had significantly higher P450 enzyme expression levels after PBO exposure compared to laboratory controls. These results demonstrate that PBO alone may not be enough to control highly pyrethroid resistant mosquitoes due to the multiple resistance mechanisms. Mosquito resistance to PBO-synergized insecticide should be closely monitored.


2021 ◽  
Vol 28 (3) ◽  
pp. 437-456
Author(s):  
Rodney E. Shackelford ◽  
Islam Z. Mohammad ◽  
Andrew T. Meram ◽  
David Kim ◽  
Fawaz Alotaibi ◽  
...  

Hydrogen sulfide (H2S) is a gasotransmitter that exerts a multitude of functions in both physiologic and pathophysiologic processes. H2S-synthesizing enzymes are increased in a variety of human malignancies, including colon, prostate, breast, renal, urothelial, ovarian, oral squamous cell, and thyroid cancers. In cancer, H2S promotes tumor growth, cellular and mitochondrial bioenergetics, migration, invasion, angiogenesis, tumor blood flow, metastasis, epithelia–mesenchymal transition, DNA repair, protein sulfhydration, and chemotherapy resistance Additionally, in some malignancies, increased H2S-synthesizing enzyme expression correlates with a worse prognosis and a higher tumor stage. Here we review the role of H2S in cancer, with an emphasis on the molecular mechanisms by which H2S promotes cancer development, progression, dedifferentiation, and metastasis.


Author(s):  
Numan Taspinar ◽  
Ahmet Hacimuftuoglu ◽  
Selcuk Butuner ◽  
Basak Togar ◽  
Gokhan Arslan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document